Butyrate Improves Skin/Lung Fibrosis and Intestinal Dysbiosis in Bleomycin-Induced Mouse Models
<p>Antifibrotic effects of butyrate in the BLM-induced skin fibrosis mouse model. Bleomycin (BLM) was injected subcutaneously to the back skin of mice five times a week for two weeks. Sodium butyrate (SB) was orally gavaged from two weeks before BLM injection. Skin tissues were then obtained in normal and BLM ± SB mice to evaluate fibrosis. (<b>A</b>) Representative images of the Masson’s trichrome stain and dermal thickness (arrow length) in skin tissues. Data are representative of at least four independent experiments with <span class="html-italic">n</span> = 5–7/group. (<b>B</b>–<b>D</b>) Representative immunofluorescence images of skin stained with DAPI (blue) and α-SMA (green) (<b>B</b>), representative Western blotting and quantitative analysis of α-SMA expression (<b>C</b>), and collagen content (<b>D</b>) in the skin. Data are representative of two independent experiments with <span class="html-italic">n</span> = 3–5/group; each symbol represents one mouse. Scale bars = 100 µm. DAPI: 4′,6-diamidino-2-phenylindole. ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 2
<p>Composition of fecal microbiota. Bleomycin (BLM) was injected subcutaneously for two weeks. Sodium butyrate (SB) was administered orally from two weeks before BLM injection and feces were then obtained. The 16S sequences of fecal microbiota were analyzed in normal and BLM ± SB mice. (<b>A</b>) Microbiota richness estimated by the number of operational taxonomic units (OTUs) and Shannon index. (<b>B</b>) Microbiota diversity evaluated by principal coordinate analysis plots of UniFrac distances. (<b>C</b>,<b>D</b>) The overall composition of gut microbiota (left) and statistically significant changes (right) at the phylum level (<b>C</b>) and at the family level (<b>D</b>). (<b>E</b>) Heatmap of differentially abundant microbial genera among groups. Color represents normalized (z-score) relative abundance of bacteria from green (low abundance) to red (high abundance) (<b>E</b>). <span class="html-italic">n</span> = 3/group; each symbol represents one mouse. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 in (<b>C</b>,<b>D</b>). * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 vs. normal, # <span class="html-italic">p</span> < 0.05 vs. BLM in (<b>E</b>).</p> "> Figure 3
<p>Flow cytometric analysis of immune cell populations in the mesenteric lymph nodes (MLN) and spleen of normal and bleomycin (BLM) ± sodium butyrate (SB) mice. BLM was injected subcutaneously for two weeks. SB was administered orally from two weeks before BLM injection. Immune cells were then obtained from the MLN and spleen. (<b>A</b>) Flow cytometric gating strategy for macrophage and DC lineages. (<b>B</b>) Flow cytometry was used to assess total leukocytes (CD45<sup>+</sup>), macrophages (CD45<sup>+</sup>CD64<sup>+</sup>CD11b<sup>+</sup>CX<sub>3</sub>CR1<sup>+</sup>), DCs (CD45<sup>+</sup>CD64<sup>−</sup>CD11c<sup>+</sup>MHCII<sup>+</sup>), B cells (B220+), and CD4+ T cells in MLN and spleen from normal and BLM ± SB mice. (<b>C</b>) Macrophage lineages were subdivided into phase 1 (P1: newly recruited monocytes), phase 2 (P2: maturing monocytes), and phase 3 (P3: monocyte/macrophage intermediates and resident macrophages) following developmental stages. Inflammatory monocytes were defined as both Ly6C<sup>+</sup>MHCII<sup>−</sup> (P1) and Ly6C<sup>+</sup>MHCII<sup>+</sup> (P2). Representative dot plots, percentages (gated on macrophage lineage) and absolute numbers of inflammatory monocytes are shown in the MLN (upper) and spleen (lower) from normal and BLM ± SB mice. Data are representative of two independent experiments with <span class="html-italic">n</span> = 4–5/group; each symbol represents one mouse. MHCII: Major histocompatibility complex class II. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 4
<p>Expression of CD11b<sup>+</sup>CX<sub>3</sub>CR1<sup>+</sup> macrophages in skin tissues from normal and bleomycin (BLM) ± sodium butyrate (SB) mice. BLM was injected subcutaneously for two weeks. SB was orally administered from two weeks before BLM injection and skin samples were then obtained. Representative immunofluorescent images of skin stained for DAPI (blue), CD11b (green), and CX<sub>3</sub>CR1 (red). Magnification, 400×. Scale bars = 100 µm. <span class="html-italic">n</span> = 6/group.</p> "> Figure 5
<p>Expression profiles of profibrotic and proinflammatory genes in skin from normal and bleomycin (BLM) ± sodium butyrate (SB) mice. BLM was injected subcutaneously for two weeks. SB was administered orally from two weeks before BLM injection and skin samples were then obtained. <span class="html-italic">n</span> = 4–6/group; each symbol represents one mouse. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 6
<p>Antifibrotic effect of butyrate on dermal fibroblasts. (<b>A</b>–<b>C</b>) Primary human dermal fibroblasts (HDFs) were stimulated with TGF-β1 (10 ng/mL) with or without sodium butyrate (SB) (0.5–1 mM) for 24–48 h. Western blotting or qPCR was performed to analyze protein and mRNA expression in the cell lysate from fibroblasts. Representative data of three independent experiments. (<b>A</b>) Expression of the α-SMA protein by Western blotting. (<b>B</b>) Expression of mRNA for <span class="html-italic">ACTA2</span>, <span class="html-italic">COL1A1</span>, <span class="html-italic">IL6</span>, and <span class="html-italic">IL1B</span> by qPCR. (<b>C</b>) Acetylated histone H3 (Ac-H3) and histone H3 (H3) protein expression. (<b>D</b>) BLM was injected subcutaneously to the back skin of mice five times a week for two weeks with simultaneous subcutaneous (s.c.) injection of SB or phosphate-buffered saline (PBS). Representative images of the Masson’s trichrome stain and dermal thickness in skin sections. <span class="html-italic">n</span> = 6/group (<span class="html-italic">n</span> = 2 for normal); each symbol represents one mouse. Scale bars = 100 µm, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 7
<p>Antifibrotic effects of sodium butyrate (SB) in bleomycin (BLM)-induced lung fibrosis mouse models. (<b>A</b>) The BLM-induced pulmonary fibrosis model was used to investigate the effect of SB on lung fibrosis in mice. BLM was administered once intratracheally (i.t.). SB was orally gavaged for five weeks, starting two weeks before BLM injection. Representative images of the Masson’s trichrome stain and histological score (Ashcroft score) in lung tissues from normal and BLM ± SB mice. Scale bars = 500 µm. (<b>B</b>–<b>E</b>) BLM-induced skin fibrosis model was used to investigate the effect of SB on lung fibrosis in mice. BLM was injected subcutaneously (s.c.) for two weeks. SB was administered orally from two weeks before BLM injection and lung tissues were then obtained. (<b>B</b>) Representative images of the Masson’s trichrome stain and Ashcroft score in lung tissues from normal and BLM ± SB mice. The results were verified through four independent experiments. <span class="html-italic">n</span> = 5–7/group in each experiment. Scale bars = 500 µm. (<b>C</b>) Representative immunohistochemical image of α-SMA (brown colors: arrows). Scale bars = 100 µm. (<b>D</b>) Representative Western blotting and quantitative analysis of α-SMA expression. (<b>E</b>) Total collagen content in lung tissues from normal and BLM ± SB mice. <span class="html-italic">n</span> = 3–6/group; each symbol represents one mouse. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 8
<p>Modulation of macrophage populations in the bronchoalveolar lavage fluid (BALF). (<b>A</b>,<b>B</b>) Flow cytometry was used to assess macrophage subsets in the BALF from normal and bleomycin (BLM) ± sodium butyrate (SB) mice in the BLM-induced skin fibrosis model. (<b>A</b>) Total leukocytes (CD45<sup>+</sup>) and macrophages (CD45<sup>+</sup>CD64<sup>+</sup>F4/80<sup>+</sup>) in the BALF from normal and BLM ± SB mice. (<b>B</b>) LMs were divided into AMs (CD11c<sup>+</sup>CD11b<sup>−</sup>) and IMs (CD11b<sup>+</sup>). Representative dot plots, percentages (gated on macrophages), and absolute numbers of AMs and IMs are shown in the BALF from normal and BLM ± SB mice. (<b>C</b>) Expression levels of mRNA of profibrotic and proinflammatory mediators in lung tissues from normal and BLM ± SB mice. <span class="html-italic">n</span> = 3–5/group; each symbol represents one mouse. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> ">
Abstract
:1. Introduction
2. Results
2.1. SB Ameliorates Dermal Fibrosis in a BLM-Induced Skin Fibrosis Mouse Model
2.2. SB Affects Fecal Microbiota Composition Altered in BLM-Induced Skin Fibrosis Mice
2.3. SB Inhibits Infiltration of Inflammatory Monocytes in Mesenteric Lymph Nodes and Spleen of BLM-Induced Skin Fibrosis Mice
2.4. SB Prevents Recruitment of Macrophages and Suppresses Upregulation of Profibrotic and Proinflammatory Genes in BLM-Treated Fibrotic Skin
2.5. SB Treatment Inhibits TGF-β1-Induced Fibrotic Responses in HDFs
2.6. SB Has Anti-Fibrogenic Effects on the Lung in BLM-Induced Fibrosis Mouse Models
2.7. SB Controls Macrophage Differentiation in Bronchoalveolar Lavage Fluid
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Fibrosis Animal Models
4.3. Cell Lines, Cell Cultures, and Experimental Design
4.4. Histological Analysis
4.5. Immunofluorescent and Immunohistochemical Staining
4.6. Western Blot Analysis
4.7. Collagen Measurement
4.8. Fecal Collection and Microbiota Analysis
4.9. Cell Isolation and Flow Cytometric Analysis
4.10. RNA Isolation and Gene Expression Analysis
4.11. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Patrone, V.; Puglisi, E.; Cardinali, M.; Schnitzler, T.S.; Svegliati, S.; Festa, A.; Gabrielli, A.; Morelli, L. Gut microbiota profile in systemic sclerosis patients with and without clinical evidence of gastrointestinal involvement. Sci. Rep. 2017, 7, 14874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, P.; Sisirak, V.; Lazaro, E.; Richez, C.; Duffau, P.; Blanco, P.; Truchetet, M.E.; Contin-Bordes, C. Innate Immunity in Systemic Sclerosis Fibrosis: Recent Advances. Front. Immunol. 2018, 9, 1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kania, G.; Rudnik, M.; Distler, O. Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat. Rev. Rheumatol. 2019, 15, 288–302. [Google Scholar] [CrossRef]
- Khanna, D.; Spino, C.; Johnson, S.; Chung, L.; Whitfield, M.L.; Denton, C.P.; Berrocal, V.; Franks, J.; Mehta, B.; Molitor, J.; et al. Abatacept in Early Diffuse Cutaneous Systemic Sclerosis: Results of a Phase II Investigator-Initiated, Multicenter, Double-Blind, Randomized, Placebo-Controlled Trial. Arthritis Rheumatol. 2020, 72, 125–136. [Google Scholar] [CrossRef]
- Sierra-Sepulveda, A.; Esquinca-Gonzalez, A.; Benavides-Suarez, S.A.; Sordo-Lima, D.E.; Caballero-Islas, A.E.; Cabral-Castaneda, A.R.; Rodriguez-Reyna, T.S. Systemic Sclerosis Pathogenesis and Emerging Therapies, beyond the Fibroblast. Biomed. Res. Int. 2019, 2019, 4569826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuoka, H. Recent Treatments of Interstitial Lung Disease with Systemic Sclerosis. Clin. Med. Insights Circ. Respir. Pulm. Med. 2015, 9, 97–110. [Google Scholar]
- Sobanski, V.; Launay, D.; Hachulla, E.; Humbert, M. Current Approaches to the Treatment of Systemic-Sclerosis-Associated Pulmonary Arterial Hypertension (SSc-PAH). Curr. Rheumatol. Rep. 2016, 18, 10. [Google Scholar] [CrossRef]
- De Luca, F.; Shoenfeld, Y. The microbiome in autoimmune diseases. Clin. Exp. Immunol. 2019, 195, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Volkmann, E.R.; Chang, Y.L.; Barroso, N.; Furst, D.E.; Clements, P.J.; Gorn, A.H.; Roth, B.E.; Conklin, J.L.; Getzug, T.; Borneman, J.; et al. Association of Systemic Sclerosis With a Unique Colonic Microbial Consortium. Arthritis Rheumatol. 2016, 68, 1483–1492. [Google Scholar] [CrossRef] [Green Version]
- Bellocchi, C.; Volkmann, E.R. Update on the Gastrointestinal Microbiome in Systemic Sclerosis. Curr. Rheumatol. Rep. 2018, 20, 49. [Google Scholar] [CrossRef]
- Bellocchi, C.; Fernandez-Ochoa, A.; Montanelli, G.; Vigone, B.; Santaniello, A.; Milani, C.; Quirantes-Pine, R.; Borras-Linares, I.; Ventura, M.; Segura-Carrettero, A.; et al. Microbial and metabolic multi-omic correlations in systemic sclerosis patients. Ann. N. Y. Acad. Sci. 2018, 1421, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Frech, T.M.; Khanna, D.; Maranian, P.; Frech, E.J.; Sawitzke, A.D.; Murtaugh, M.A. Probiotics for the treatment of systemic sclerosis-associated gastrointestinal bloating/ distention. Clin. Exp. Rheumatol. 2011, 29, S22–S25. [Google Scholar]
- Marighela, T.F.; Arismendi, M.I.; Marvulle, V.; Brunialti, M.K.C.; Salomao, R.; Kayser, C. Effect of probiotics on gastrointestinal symptoms and immune parameters in systemic sclerosis: A randomized placebo-controlled trial. Rheumatology 2019, 58, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, B.D.; Zhao, L.D.; Li, H. The Gut Microbiota: Emerging Evidence in Autoimmune Diseases. Trends Mol. Med. 2020, 26, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; Gonzalez, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabel, A.M.; Omar, M.S.; Elmaaboud, M.A.A. Amelioration of bleomycin-induced lung fibrosis in rats by valproic acid and butyrate: Role of nuclear factor kappa-B, proinflammatory cytokines and oxidative stress. Int. Immunopharmacol. 2016, 39, 335–342. [Google Scholar] [CrossRef]
- Schulthess, J.; Pandey, S.; Capitani, M.; Rue-Albrecht, K.C.; Arnold, I.; Franchini, F.; Chomka, A.; Ilott, N.E.; Johnston, D.G.W.; Pires, E.; et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity 2019, 50, 432–445 e437. [Google Scholar] [CrossRef] [Green Version]
- Berni Canani, R.; Di Costanzo, M.; Leone, L. The epigenetic effects of butyrate: Potential therapeutic implications for clinical practice. Clin. Epigenet. 2012, 4, 4. [Google Scholar] [CrossRef]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef] [Green Version]
- Nastasi, C.; Candela, M.; Bonefeld, C.M.; Geisler, C.; Hansen, M.; Krejsgaard, T.; Biagi, E.; Andersen, M.H.; Brigidi, P.; Odum, N.; et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 2015, 5, 16148. [Google Scholar] [CrossRef]
- Kespohl, M.; Vachharajani, N.; Luu, M.; Harb, H.; Pautz, S.; Wolff, S.; Sillner, N.; Walker, A.; Schmitt-Kopplin, P.; Boettger, T.; et al. The Microbial Metabolite Butyrate Induces Expression of Th1-Associated Factors in CD4(+) T Cells. Front. Immunol. 2017, 8, 1036. [Google Scholar] [CrossRef]
- Kim, D.S.; Kwon, J.E.; Lee, S.H.; Kim, E.K.; Ryu, J.G.; Jung, K.A.; Choi, J.W.; Park, M.J.; Moon, Y.M.; Park, S.H.; et al. Attenuation of Rheumatoid Inflammation by Sodium Butyrate Through Reciprocal Targeting of HDAC2 in Osteoclasts and HDAC8 in T Cells. Front. Immunol. 2018, 9, 1525. [Google Scholar] [CrossRef]
- Mathewson, N.D.; Jenq, R.; Mathew, A.V.; Koenigsknecht, M.; Hanash, A.; Toubai, T.; Oravecz-Wilson, K.; Wu, S.R.; Sun, Y.; Rossi, C.; et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol. 2016, 17, 505–513. [Google Scholar] [CrossRef]
- Mizuno, M.; Noto, D.; Kaga, N.; Chiba, A.; Miyake, S. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS ONE 2017, 12, e0173032. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; He, G.; Peng, Y.; Zhong, W.; Wang, Y.; Zhang, B. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway. Sci. Rep. 2015, 5, 12676. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhou, Q.; Dorfman, R.G.; Huang, X.; Fan, T.; Zhang, H.; Zhang, J.; Yu, C. Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterol. 2016, 16, 84. [Google Scholar] [CrossRef] [Green Version]
- Korfei, M.; Skwarna, S.; Henneke, I.; MacKenzie, B.; Klymenko, O.; Saito, S.; Ruppert, C.; von der Beck, D.; Mahavadi, P.; Klepetko, W.; et al. Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary fibrosis. Thorax 2015, 70, 1022–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, Y.Y.; Hagood, J.S.; Liu, H.; Zhang, W.; Ambalavanan, N.; Thannickal, V.J. Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice. Eur. Respir. J. 2014, 43, 1448–1458. [Google Scholar] [CrossRef] [PubMed]
- Kaisar, M.M.M.; Pelgrom, L.R.; van der Ham, A.J.; Yazdanbakhsh, M.; Everts, B. Butyrate Conditions Human Dendritic Cells to Prime Type 1 Regulatory T Cells via both Histone Deacetylase Inhibition and G Protein-Coupled Receptor 109A Signaling. Front. Immunol. 2017, 8, 1429. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kim, H.Y.; Kim, M.G.; Jeong, S.; Yun, C.H.; Han, S.H. Short-chain Fatty Acids Inhibit Staphylococcal Lipoprotein-induced Nitric Oxide Production in Murine Macrophages. Immune Netw. 2019, 19, e9. [Google Scholar] [CrossRef] [PubMed]
- Beyer, C.; Schett, G.; Distler, O.; Distler, J.H. Animal models of systemic sclerosis: Prospects and limitations. Arthritis Rheum. 2010, 62, 2831–2844. [Google Scholar] [CrossRef]
- Koga, Y.; Maeshige, N.; Tabuchi, H.; Uemura, M.; Aoyama-Ishikawa, M.; Miyoshi, M.; Katakami, C.; Usami, M. Suppression of fibrosis in human pterygium fibroblasts by butyrate and phenylbutyrate. Int. J. Ophthalmol. 2017, 10, 1337–1343. [Google Scholar] [PubMed]
- Rishikof, D.C.; Ricupero, D.A.; Liu, H.; Goldstein, R.H. Phenylbutyrate decreases type I collagen production in human lung fibroblasts. J. Cell Biochem. 2004, 91, 740–748. [Google Scholar] [CrossRef]
- Stifano, G.; Affandi, A.J.; Mathes, A.L.; Rice, L.M.; Nakerakanti, S.; Nazari, B.; Lee, J.; Christmann, R.B.; Lafyatis, R. Chronic Toll-like receptor 4 stimulation in skin induces inflammation, macrophage activation, transforming growth factor beta signature gene expression, and fibrosis. Arthritis Res. Ther. 2014, 16, R136. [Google Scholar] [CrossRef] [Green Version]
- Andreasson, K.; Alrawi, Z.; Persson, A.; Jonsson, G.; Marsal, J. Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthritis Res. Ther. 2016, 18, 278. [Google Scholar] [CrossRef] [Green Version]
- Volkmann, E.R.; Hoffmann-Vold, A.M.; Chang, Y.L.; Jacobs, J.P.; Tillisch, K.; Mayer, E.A.; Clements, P.J.; Hov, J.R.; Kummen, M.; Midtvedt, O.; et al. Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts. BMJ Open Gastroenterol. 2017, 4, e000134. [Google Scholar] [CrossRef] [PubMed]
- Riviere, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016, 7, 979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, M.; Thaiss, C.A.; Elinav, E. Metabolites: Messengers between the microbiota and the immune system. Genes Dev. 2016, 30, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- Onrust, L.; Baeyen, S.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Effect of in feed administration of different butyrate formulations on Salmonella Enteritidis colonization and cecal microbiota in broilers. Vet. Res. 2020, 51, 56. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wright, K.; Davis, J.M.; Jeraldo, P.; Marietta, E.V.; Murray, J.; Nelson, H.; Matteson, E.L.; Taneja, V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Reese, C.; Perry, B.; Heywood, J.; Bonner, M.; Zemskova, M.; Silver, R.M.; Hoffman, S.; Tourkina, E. Enhanced chemokine-receptor expression, function, and signaling in healthy African American and scleroderma-patient monocytes are regulated by caveolin-1. Fibrogenesis Tissue Repair 2015, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Kraling, B.M.; Maul, G.G.; Jimenez, S.A. Mononuclear cellular infiltrates in clinically involved skin from patients with systemic sclerosis of recent onset predominantly consist of monocytes/macrophages. Pathobiology 1995, 63, 48–56. [Google Scholar]
- Rossi, G.A.; Bitterman, P.B.; Rennard, S.I.; Ferrans, V.J.; Crystal, R.G. Evidence for chronic inflammation as a component of the interstitial lung disease associated with progressive systemic sclerosis. Am. Rev. Respir. Dis. 1985, 131, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Mathai, S.K.; Gulati, M.; Peng, X.; Russell, T.R.; Shaw, A.C.; Rubinowitz, A.N.; Murray, L.A.; Siner, J.M.; Antin-Ozerkis, D.E.; Montgomery, R.R.; et al. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab. Investig. 2010, 90, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lee, Y.; Song, J.; Lee, J.; Chang, S.Y. Tissue-specific Role of CX3CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw. 2018, 18, e5. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Barron, L. Macrophages: Master regulators of inflammation and fibrosis. Semin. Liver Dis. 2010, 30, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Zhang, L.; Yu, C.; Yang, X.F.; Wang, H. Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res. 2014, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Mildner, A.; Marinkovic, G.; Jung, S. Murine Monocytes: Origins, Subsets, Fates, and Functions. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Luong, V.H.; Chino, T.; Oyama, N.; Matsushita, T.; Sasaki, Y.; Ogura, D.; Niwa, S.I.; Biswas, T.; Hamasaki, A.; Fujita, M.; et al. Blockade of TGF-beta/Smad signaling by the small compound HPH-15 ameliorates experimental skin fibrosis. Arthritis Res. Ther. 2018, 20, 46. [Google Scholar] [CrossRef]
- Assassi, S.; Wu, M.; Tan, F.K.; Chang, J.; Graham, T.A.; Furst, D.E.; Khanna, D.; Charles, J.; Ferguson, E.C.; Feghali-Bostwick, C.; et al. Skin gene expression correlates of severity of interstitial lung disease in systemic sclerosis. Arthritis Rheum. 2013, 65, 2917–2927. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Eckes, B.; Hartmann, K.; Krieg, T. Expression of monocyte chemoattractant protein-1 in the lesional skin of systemic sclerosis. J. Dermatol. Sci. 2001, 26, 133–139. [Google Scholar] [CrossRef]
- Byrne, A.J.; Mathie, S.A.; Gregory, L.G.; Lloyd, C.M. Pulmonary macrophages: Key players in the innate defence of the airways. Thorax 2015, 70, 1189–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svedberg, F.R.; Brown, S.L.; Krauss, M.Z.; Campbell, L.; Sharpe, C.; Clausen, M.; Howell, G.J.; Clark, H.; Madsen, J.; Evans, C.M.; et al. The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nat. Immunol. 2019, 20, 571–580. [Google Scholar] [CrossRef]
- Byrne, A.J.; Maher, T.M.; Lloyd, C.M. Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease? Trends Mol. Med. 2016, 22, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.J.; Ma, Y.Q.; Zhou, X.; Zhang, Y.D.; Lu, R.Y.; Sun, H.Y.; Guo, Z.Z.; Zhang, Z.; Li, Y.M.; Wei, L.Q. Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury. J. Immunol. Methods 2014, 403, 7–16. [Google Scholar] [CrossRef]
- Liang, J.; Jung, Y.; Tighe, R.M.; Xie, T.; Liu, N.; Leonard, M.; Gunn, M.D.; Jiang, D.; Noble, P.W. A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. Am. J.Physiol. Lung Cell Mol. Physiol. 2012, 302, L933–L940. [Google Scholar] [CrossRef] [PubMed]
- Ota, C.; Yamada, M.; Fujino, N.; Motohashi, H.; Tando, Y.; Takei, Y.; Suzuki, T.; Takahashi, T.; Kamata, S.; Makiguchi, T.; et al. Histone deacetylase inhibitor restores surfactant protein-C expression in alveolar-epithelial type II cells and attenuates bleomycin-induced pulmonary fibrosis in vivo. Exp. Lung Res. 2015, 41, 422–434. [Google Scholar] [CrossRef]
- Hubner, R.H.; Gitter, W.; El Mokhtari, N.E.; Mathiak, M.; Both, M.; Bolte, H.; Freitag-Wolf, S.; Bewig, B. Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques 2008, 44, 507–511, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Chigurupati, S.; Mughal, M.R.; Chan, S.L.; Arumugam, T.V.; Baharani, A.; Tang, S.C.; Yu, Q.S.; Holloway, H.W.; Wheeler, R.; Poosala, S.; et al. A synthetic uric acid analog accelerates cutaneous wound healing in mice. PLoS ONE 2010, 5, e10044. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.J.; Jeong, O.-Y.; Chun, S.H.; Cheon, Y.H.; Kim, M.; Kim, S.; Lee, S.-I. Butyrate Improves Skin/Lung Fibrosis and Intestinal Dysbiosis in Bleomycin-Induced Mouse Models. Int. J. Mol. Sci. 2021, 22, 2765. https://doi.org/10.3390/ijms22052765
Park HJ, Jeong O-Y, Chun SH, Cheon YH, Kim M, Kim S, Lee S-I. Butyrate Improves Skin/Lung Fibrosis and Intestinal Dysbiosis in Bleomycin-Induced Mouse Models. International Journal of Molecular Sciences. 2021; 22(5):2765. https://doi.org/10.3390/ijms22052765
Chicago/Turabian StylePark, Hee Jin, Ok-Yi Jeong, Sung Hak Chun, Yun Hong Cheon, Mingyo Kim, Suhee Kim, and Sang-Il Lee. 2021. "Butyrate Improves Skin/Lung Fibrosis and Intestinal Dysbiosis in Bleomycin-Induced Mouse Models" International Journal of Molecular Sciences 22, no. 5: 2765. https://doi.org/10.3390/ijms22052765
APA StylePark, H. J., Jeong, O.-Y., Chun, S. H., Cheon, Y. H., Kim, M., Kim, S., & Lee, S.-I. (2021). Butyrate Improves Skin/Lung Fibrosis and Intestinal Dysbiosis in Bleomycin-Induced Mouse Models. International Journal of Molecular Sciences, 22(5), 2765. https://doi.org/10.3390/ijms22052765