The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement
"> Figure 1
<p>The visco-elastic properties of the 10 <span class="html-italic">w</span>/<span class="html-italic">v</span>% and 20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA–PEG–PLGA) aqueous solutions (red and blue lines respectively). “1” represents the sol-gel transition (start of gelation) and “2” the gel-sol transition (end of gelation).</p> "> Figure 2
<p>Time-sweep curves of alpha-tricalcium phosphate (α-TCP) cement pastes with (<b>a</b>) and (<b>b</b>) differing liquid to powder (L/P) ratios (0.35; 0.5; 0.65 g·g<sup>−1</sup>) and liquid phases (0 <span class="html-italic">w</span>/<span class="html-italic">v</span>% water and 10 <span class="html-italic">w</span>/<span class="html-italic">v</span>% polymer solution) at 23 °C (the curves determined for the α-TCP cement pastes with the 20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% polymer solution are shown in <a href="#app1-ijms-20-00391" class="html-app">Supplementary Figure S4</a>), (<b>c</b>) and (<b>d</b>) a constant L/P ratio of 0.5 g·g<sup>−1</sup> and differing polymer solution concentrations (0 <span class="html-italic">w</span>/<span class="html-italic">v</span>%, 10 <span class="html-italic">w</span>/<span class="html-italic">v</span>% and 20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% polymer solutions) at 23 and 37 °C, respectively.</p> "> Figure 3
<p>Steady rheological analysis and the viscosity curves of the copolymer solution and CPCs after 1 min of setting. Relationship between shear stress and the shear rate (<b>a</b>) and relationship between viscosity and the shear rate (<b>b</b>) of the 20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% copolymer solution (blue line with triangles), α-TCP paste with deionized water (red line with circles) and α-TCP paste with 20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% copolymer solution (black line with squares), prepared at an L/P of 0.5 g·g<sup>−1</sup> at 25 °C. The arrows indicate the outward and return sweeps; the hysteresis loop indicates thixotropy. While the α-TCP cement made from the addition of pure water separated following steady state rheological measurement (<b>c</b>) and disintegrated following immediate injection in water at 37 °C (<b>e</b>), the α-TCP cement made from the addition of the 20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% copolymer solution remained homogeneous (<b>d</b>) and exhibited cohesion following injection in water at 37 °C, retaining the shape of the injected filament (<b>f</b>).</p> "> Figure 4
<p>Change in the pH and mass loss of the 20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% copolymer/<span class="html-italic">α</span>-TCP cement with an L/P of 0.5 g·g<sup>−1</sup> at 37 °C and immersed in ultrapure water.</p> "> Figure 5
<p>Crystalline phase analysis of the 20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% polymer/CPC over a reaction time of 3 h to 28 days at a fixed L/P ratio of 0.5 g·g<sup>−1</sup> at 37 °C. (<b>a</b>) Representative XRD patterns, apatite was detected as soon as after 24 h (grey plotted part) and α-TCP was detected up to the third day of reaction (purple plotted part). (<b>b</b>) Intensity of the XRD peaks at 12.06; 14.02; 15.16; 22.20; 24.10 and 30.74 °(2ϴ). (<b>c</b>) The total average transformation of α-TCP to calcium deficient hydroxyapatite (CDHA) while neglecting negative values at the 3, 6 and 12 h setting times.</p> "> Figure 6
<p>Microstructure and porosity development of the cement samples prepared at an L/P ratio of 0.5 g·g<sup>−1</sup>, <span class="html-italic">α</span>-TCP mixed with 20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% of the copolymer at different reaction times at 37 °C. (<b>a</b>) Representative SEM images of the fracture surface for <span class="html-italic">α</span>-TCP pastes after 3 h, 6 h, 24 h, 3 d, 7 d and 14 d of reaction. The scale bar is 1 µm in all cases. (<b>b</b>) Pore size distribution during a reaction time from 10 h to 14 d.</p> "> Figure 7
<p>Results of the compression and accelerated degradation tests conducted on the 20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% polymer/CPC at an L/P ratio of 0.5 g·g<sup>−1</sup>. Ultimate compressive strength during the reaction time of 3 to 14 days at 37 °C (<b>a</b>), * denotes statistically significant differences (<span class="html-italic">p</span> > 0.05) between the 14 day group and the 3 day group. Changes in the compressive strength of the same cement set for 10 days as a function of the mass loss; the points correspond to 0, 4 and 8 h of exposure to acidic conditions at 37 °C (<b>b</b>). The concentration of free Ca<sup>2+</sup> ions in the supernatants following the exposure of the samples to acidic conditions (<b>c</b>); the red line highlights the fit of the experimental points with the first order release model according to <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <msub> <mi>C</mi> <mo>∞</mo> </msub> <mo>−</mo> <msub> <mi>C</mi> <mn>0</mn> </msub> <mtext> </mtext> <mi>e</mi> <mi>x</mi> <mi>p</mi> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mi>λ</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mtext> </mtext> </msup> </mrow> </semantics></math>. The calculated half-life time <span class="html-italic">λ</span> of the release of the Ca<sup>2+</sup> ions was 4.68 h.</p> "> Figure 8
<p>SEM images of the microstructure of the CPCs with the 20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% copolymer and an L/P ratio of 0.5 g·g<sup>−1</sup> (set for 10 days at 37 °C) after 0, 2 and 8 h of accelerated degradation with a scale bar of 1 mm (left), 200 μm (centre) and 10 μm (right).</p> "> Figure 9
<p>Cytocompatibility test on hMSCs; the cell morphology after 3 days of seeding on copolymer/<span class="html-italic">α</span>-TCP disks (20 <span class="html-italic">w</span>/<span class="html-italic">v</span>% copolymer, L/P of 0.5 g·g<sup>−1</sup>; setting for 10 days), cells seeded on scaffolds were visualized using confocal microscopy (DiOC6(3) – green color; propidium iodide – red color), scale bar = 100 μm (<b>a</b>). Cell metabolic activity was determined using MTS test (<b>b</b>); cell proliferation was determined in terms of the quantification of the amount of DNA at 24 hours and 3 days (<b>c</b>). Cells seeded on tissue culture plastic were used as a control and the data in b and c were normalized to the values obtained after 24 h of cell culture.</p> "> Figure 10
<p>Scheme represents copolymer and α-TCP mixing followed by fast micellization of copolymer at 37 °C accompanied by both α-TCP dissolution and CDHA precipitation. With prolong time in the range of days, the CDHA crystals grow while packing together and increasing their size.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization of the PLGA–PEG–PLGA Copolymer
2.1.1. Copolymer Composition
2.1.2. Sol-Gel Transitions
2.2. Alpha-Tricalcium Phosphate Preparation and Characterization
2.3. Rheology and Self-Setting Reaction of the Copolymer/α-TCP Cements
2.4. Visco-Elastic Properties of Copolymer/α-TCP Cements
2.5. The Effect of the Self-Setting Reaction on pH, Mass Loss and Crystalline Composition
2.6. Microstructure and Microporosity
2.7. Mechanical Testing and Degradation Study
2.8. Cytocompatibility Testing
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Synthesis of PLGA–PEG–PLGA Triblock Copolymers (Liquid Component of the CPC)
4.3. Synthesis of α-Tricalcium Phosphate (Powder Component of the CPC)
4.4. Molecular Weight Analysis
4.5. Particle Size Analysis
4.6. Rheological Analysis
4.6.1. Copolymer Thermo-Sensitivity Measurement
4.6.2. Copolymer/α-TCP Setting Kinetics
4.6.3. Copolymer/α-TCP Thixotropy and Viscosity
4.7. Microstructure Observation
4.8. Kinetics of the α-TCP Transformation to CDHA
4.9. Porosity Determination
4.10. Compression Testing
4.11. Accelerated Degradation Study
Mass Loss and Calcium Ion Release
4.12. Cytocompatibility Testing
4.12.1. DNA Quantification
4.12.2. Cell Distribution
4.12.3. MTS Test
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bohner, M.; Gbureck, U.; Barralet, J. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment. Biomaterials 2005, 26, 6423–6429. [Google Scholar] [CrossRef]
- Ginebra, M.; Canal, C.; Espanol, M.; Pastorino, D.; Montufar, E. Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev. 2012, 64, 1090–1110. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, R.; Buchanan, F.; Dunne, N. Injectable calcium phosphate cements for spinal bone repair. Biomater. Bone Regen. 2014, 26–61. [Google Scholar] [CrossRef]
- O’Hara, R.; Orr, J.; Buchanan, F.; Wilcox, R.; Barton, D.; Dunne, N. Development of a bovine collagen–apatitic calcium phosphate cement for potential fracture treatment through vertebroplasty. Acta Biomater. 2012, 8, 4043–4052. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.; Ginebra, M. Injectable collagen/α-tricalcium phosphate cement: Collagen–mineral phase interactions and cell response. J. Mater. Sci. Mater. Med. 2013, 24, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Bigi, A.; Bracci, B.; Panzavolta, S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials 2004, 25, 2893–2899. [Google Scholar] [CrossRef]
- An, J.; Wolke, J.; Jansen, J.; Leeuwenburgh, S. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements. J. Mater. Sci. Mater. Med. 2016, 27, 58. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Esfakur Rahman, A.; Lee, B. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid. J. Mater. Sci. Mater. Med. 2009, 20, 935–941. [Google Scholar] [CrossRef]
- Wang, X.; Ye, J.; Wang, H. Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material. J. Biomed. Mater. Res. Part B 2006, 78B, 259–264. [Google Scholar] [CrossRef]
- Shahbazi, S.; Moztarzadeh, F.; Sadeghi, G.; Jafari, Y. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue. Mater. Sci. Eng. C 2016, 69, 1201–1209. [Google Scholar] [CrossRef]
- Maazouz, Y.; Montufar, E.; Malbert, J.; Espanol, M.; Ginebra, M. Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes. Acta Biomater. 2017, 49, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Huh, H.; Zhao, L.; Kim, S. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer. Carbohydr. Polym. 2015, 126, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Chen, D.; Ma, X.; Liu, Y. Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int. J. Pharm. 2005, 294, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Rizzarelli, P.; Carroccio, S. Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Anal. Chim. Acta 2014, 808, 18–43. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Chang, G.; Zhang, H.; Ding, J. Temperature-induced spontaneous sol-gel transitions of poly(d,l-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(d,l-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 1122–1133. [Google Scholar] [CrossRef]
- Michlovská, L.; Vojtová, L.; Humpa, O.; Kučerík, J.; Žídek, J.; Jančář, J. Hydrolytic stability of end-linked hydrogels from PLGA–PEG–PLGA macromonomers terminated by α,ω-itaconyl groups. RSC Adv. 2016, 6, 16808–16816. [Google Scholar] [CrossRef]
- Chamradová, I.; Vojtová, L.; Částková, K.; Diviš, P.; Peterek, M.; Jančář, J. The effect of hydroxyapatite particle size on viscoelastic properties and calcium release from a thermosensitive triblock copolymer. Colloid Polym. Sci. 2017, 295, 107–115. [Google Scholar] [CrossRef]
- Michlovská, L.; Vojtová, L.; Mravcová, L.; Hermanová, S.; Kučerík, J.; Jančář, J. Functionalization Conditions of PLGA–PEG–PLGA Copolymer with Itaconic Anhydride. Macromol. Symp. 2010, 295, 119–124. [Google Scholar] [CrossRef]
- Montufar, E.; Maazouz, Y.; Ginebra, M. Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Acta Biomater. 2013, 9, 6188–6198. [Google Scholar] [CrossRef] [Green Version]
- Durucan, C.; Brown, P. α-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J. Mater. Sci. Mater. Med. 2000, 11, 365–371. [Google Scholar] [CrossRef]
- Wei, X.; Ugurlu, O.; Akinc, M. Hydrolysis of α-Tricalcium Phosphate in Simulated Body Fluid and Dehydration Behavior during the Drying Process. J. Am. Ceram. Soc. 2007, 90, 2315–2321. [Google Scholar] [CrossRef]
- Espanol, M.; Perez, R.; Montufar, E.; Marichal, C.; Sacco, A.; Ginebra, M. Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater. 2009, 5, 2752–2762. [Google Scholar] [CrossRef] [PubMed]
- Carte, D.; Hayes, W. The compressive behavior of bone as a two-phase porous structure. J. Bone Jt. Surg. Ser. A 1977, 59, 954–962. [Google Scholar] [CrossRef]
- Diez-Escudero, A.; Espanol, M.; Beats, S.; Ginebra, M.P. In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition. Acta Biomater. 2017, 60, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, I.A.; Murrills, R.J.; Etherington, D.J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 1988, 175, 266–276. [Google Scholar] [CrossRef]
- Sariibrahimoglu, K.; Leeuwenburgh, S.C.; Wolke, J.G.; Yubao, L.; Jansen, J.A. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements. J. Biomed. Mater. Res. Part A 2012, 100, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, J.M.; Guillem-Marti, J.; Montufar, E.B.; Espanol, M.; Ginebra, M.P. Biomimetic versus Sintered Calcium Phosphates: The in vitro Behavior of Osteoblasts and Mesenchymal Stem Cells. Tissue Eng. Part A 2017, 23, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Bohner, M.; Baroud, G. Injectability of calcium phosphate pastes. Biomaterials 2005, 26, 1553–1563. [Google Scholar] [CrossRef]
- O’Neill, R.; McCarthy, H.; Montufar, E.; Ginebra, M.; Wilson, D.; Lennon, A.; Dunne, N. Critical review: Injectability of calcium phosphate pastes and cements. Acta Biomater. 2017, 50, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ginebra, M.; Fernández, E.; De Maeyer, E.; Verbeeck, R.; Boltong, M.; Ginebra, J.; Driessens, F.; Planell, J. Setting Reaction and Hardening of an Apatitic Calcium Phosphate Cement. J. Dent. Res. 2016, 76, 905–912. [Google Scholar] [CrossRef]
- Liu, C.; Shao, H.; Chen, F.; Zheng, H. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials 2006, 27, 5003–5013. [Google Scholar] [CrossRef] [PubMed]
- Sarda, S.; Fernández, E.; Llorens, J.; Martínez, S.; Nilsson, M.; Planell, J. Rheological properties of an apatitic bone cement during initial setting. J. Mater. Sci. Mater. Med. 2001, 12, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Driessens, F.; Planell, J.; Boltong, M.; Khairoun, I.; Ginebra, M. Osteotransductive bone cements. Proc. Inst. Mech. Eng. Part H 2016, 212, 427–435. [Google Scholar] [CrossRef]
- Zolnik, B.S.; Burgess, D.J. Effect of acidic pH on PLGA microsphere degradation and release. J. Control. Release 2007, 122, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.Y.; Kim, J.M.; Seo, K.S.; Jeong, Y.K.; Lee, H.B.; Khang, G. Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Bio-Med. Mater. Eng. 2005, 15, 279–288. [Google Scholar]
- Smith, B.T.; Lu, A.; Watson, E.; Santoro, M.; Melchiorri, A.J.; Grosfeld, E.C.; van den Beucken, J.J.J.P.; Jansen, J.A.; Scott, D.W.; Fisher, J.P.; et al. Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration. Acta Biomater. 2018, 78, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Frankenburg, E.P.; Goldstein, S.A.; Bauer, T.W.; Harris, S.A.; Poser, R.D. Biomechanical and histological evaluation of a calcium phosphate cement. J. Bone Jt. Surg. Am. 1998, 80, 1112–1124. [Google Scholar] [CrossRef]
- Kovtun, A.; Goeckelmann, M.; Niclas, A.; Montufar, E.; Ginebra, M.; Planell, J.; Santin, M.; Ignatius, A. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams. Acta Biomater. 2015, 12, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, M.; Uhl, F.; Detsch, R.; Deisinger, U.; Ziegler, G. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J. Mater. Sci. Mater. Med. 2010, 21, 3039–3048. [Google Scholar] [CrossRef]
- ISO13314:2011. Mechanical Testing of Metals—Ductility Testing–Compression Test for Porous and Cellular Metals; ISO: Geneva, Switzerland, 2011. [Google Scholar]
L/P (g·g−1) | 0.35 | 0.5 | 0.65 | ||||||
---|---|---|---|---|---|---|---|---|---|
c (w/v%) | pH | η* (Pa·s) | Injectable/Cohesion | pH | η* (Pa·s) | Injectable/Cohesion | pH | η* (Pa·s) | Injectable/Cohesion |
0 | 8.4 | 206,000 | No/No | 8.5 | 1436 | Poorly/No | 8.6 | 345 | Yes/No |
10 | 7.4 | 3.2 | Yes/Yes | 7.3 | 2.9 | Yes/Yes | 7.2 | 2.5 | Yes/Yes |
20 | 7.1 | 43.4 | Yes/Yes | 7.0 | 12.1 | Yes/Yes | 7.0 | 4.8 | Yes/Yes |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vojtova, L.; Michlovska, L.; Valova, K.; Zboncak, M.; Trunec, M.; Castkova, K.; Krticka, M.; Pavlinakova, V.; Polacek, P.; Dzurov, M.; et al. The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement. Int. J. Mol. Sci. 2019, 20, 391. https://doi.org/10.3390/ijms20020391
Vojtova L, Michlovska L, Valova K, Zboncak M, Trunec M, Castkova K, Krticka M, Pavlinakova V, Polacek P, Dzurov M, et al. The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement. International Journal of Molecular Sciences. 2019; 20(2):391. https://doi.org/10.3390/ijms20020391
Chicago/Turabian StyleVojtova, Lucy, Lenka Michlovska, Kristyna Valova, Marek Zboncak, Martin Trunec, Klara Castkova, Milan Krticka, Veronika Pavlinakova, Petr Polacek, Matej Dzurov, and et al. 2019. "The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement" International Journal of Molecular Sciences 20, no. 2: 391. https://doi.org/10.3390/ijms20020391
APA StyleVojtova, L., Michlovska, L., Valova, K., Zboncak, M., Trunec, M., Castkova, K., Krticka, M., Pavlinakova, V., Polacek, P., Dzurov, M., Lukasova, V., Rampichova, M., Suchy, T., Sedlacek, R., Ginebra, M.-P., & Montufar, E. B. (2019). The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement. International Journal of Molecular Sciences, 20(2), 391. https://doi.org/10.3390/ijms20020391