In Vitro, In Vivo, Ex Vivo Characterisation of Dihydroimidazotriazinones and Their Thermal Decomposition Course Studied by Coupled and Simultaneous Thermal Analysis Methods
<p>Structures of the investigated compounds: <b>1</b>. R = Ph; <b>2.</b> R = 4-CH<sub>3</sub>Ph; <b>3</b>. R = 4-OCH<sub>3</sub>Ph; <b>4</b>. R = 3-ClPh; <b>5.</b> R = 4-ClPh; <b>6</b>. R = 3,4-Cl<sub>2</sub>Ph.</p> "> Figure 2
<p>Zebrafish mortality in the control and compound/standard drug-treated groups at the end of the exposure period. STD—a standard drug pemetrexed. Data represent the mean ± SD of three independent experiments under similar conditions. *—statistically different from the control group (<span class="html-italic">p</span> < 0.05, Student’s <span class="html-italic">t</span>-test).</p> "> Figure 3
<p>Hatching rates of zebrafish embryos in the control and compound/standard drug-treated groups. STD—a standard drug pemetrexed. hpf—hours post-fertilisation.</p> "> Figure 4
<p>Cardiac function measured by heartbeats per minute in zebrafish exposed to the tested compounds/standard drug. STD—a standard drug pemetrexed. Data represent the mean ± SD of three independent experiments under similar conditions. *—statistically different from the control group (<span class="html-italic">p</span> < 0.05, Student’s <span class="html-italic">t</span>-test).</p> "> Figure 5
<p>The representative 96 h old larvae from the control group and groups exposed to the highest concentration of compound/standard drug that did not induce phenotypic abnormalities.</p> "> Figure 6
<p>Phenotypic abnormalities (yolk sac swelling, pericardial oedema, and abnormal body shape) observed in 96 h old larvae treated with compounds <b>1</b>–<b>6</b> and the standard drug.</p> "> Figure 7
<p>DSC curves for the tested compounds collected in an inert atmosphere.</p> "> Figure 8
<p>TG (<b>a</b>) and DTG (<b>b</b>) curves for the tested compounds in inert conditions.</p> "> Figure 9
<p>The gaseous FTIR spectra collected at <span class="html-italic">T</span><sub>max1</sub> in inert conditions.</p> "> Figure 10
<p>The gaseous QMS spectra collected at <span class="html-italic">T</span><sub>max1</sub> in inert conditions.</p> "> Figure 11
<p>TG (<b>a</b>) and DTG (<b>b</b>) curves for the tested compounds in oxidising conditions.</p> "> Figure 12
<p>The gaseous FTIR spectra collected at <span class="html-italic">T</span><sub>max1</sub> and <span class="html-italic">T</span><sub>max2</sub>.</p> "> Figure 13
<p>The exemplary QMS spectra collected at <span class="html-italic">T</span><sub>max1</sub> (<b>a</b>) and <span class="html-italic">T</span><sub>max2</sub> (<b>b</b>) (for compound <b>2</b>) in oxidising conditions.</p> "> Scheme 1
<p>The course of pyrolysis of the tested compounds in inert conditions.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antitumour Activity and Cytotoxicity to Non-Tumour Cells of the Tested Compounds (1–6)
2.2. Assessment of the In Vivo Toxicity Profile of the Investigated Compounds (1–6)
2.3. Assessment of the Effect on Red Blood Cells of the Tested Compounds (1–6)
2.4. Assessment of the Risk of Side Effects of the Studied Compounds (1–6)
2.5. Predicting Molecular Targets for the Investigated Compounds (1–6)
2.6. Evaluation of the Melting Parameters by the DSC Method
2.7. Evaluation of the Thermal Properties by the TG/DTG Method (Inert Conditions)
2.8. The Decomposition Course of the Tested Compounds (Inert Conditions)
2.9. Evaluation of the Thermal Properties by the TG/DTG Method (Oxidising Conditions)
2.10. The Decomposition Course of the Tested Compounds (An Oxidising Atmosphere)
3. Materials and Methods
3.1. Chemicals, Standard Drugs, and Kits
3.2. The Investigated Compounds (1–6)
3.3. Assessment of the Anticancer Activity and Toxicity for Normal Cells of the Studied Compounds
3.4. Zebrafish Toxicity Studies
3.4.1. Preparing Solutions of the Tested Compounds
3.4.2. Zebrafish Breeding and Egg Collection
3.4.3. Fish Embryo Acute Toxicity (FET) Test
3.4.4. Ethical Statement
3.5. An Impact of the Investigated Compounds on Erythrocytes
3.6. Evaluation of the Melting Parameters Using the DSC Method
3.7. Evaluation of the Thermal Properties and the Decomposition Course with the Use of Simultaneous TG/DTG Method Coupled with FTIR/QMS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sztanke, K. Synthesis of new derivatives of 3-methyl-8-aryl-7,8-dihydro-6H-imidazo[2,1-c][1,2,4]triazin-4-one. Acta Pol. Pharm. 2002, 59, 235–236. [Google Scholar] [PubMed]
- Aapro, M.S. Inovative Metabolites in Solid Tumours; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Sztanke, M.; Rzymowska, J.; Janicka, M.; Sztanke, K. Two novel classes of fused azaisocytosine-containing congeners as promising drug candidates: Design, synthesis as well as in vitro, ex vivo and in silico studies. Bioorg. Chem. 2020, 95, 103480. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, S.; Stella, V.J. Stability of Drugs and Dosage Forms; Kluwer Academic Publisher: New York, NY, USA; Boston, MA, USA; Dordrecht, The Netherlands; London, UK; Moscow, Russia, 2002. [Google Scholar]
- Worzakowska, M.; Sztanke, M.; Sztanke, K. Experimental studies on the thermal properties and decomposition course of a novel class of anticancer drug candidates. Int. J. Mol. Sci. 2023, 24, 6190. [Google Scholar] [CrossRef] [PubMed]
- Wesolowski, M.; Leyk, E. Coupled and simultaneous thermal analysis techniques in the study of pharmaceuticals. Pharmaceutics 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Giron, D.; Monnier, S.; Mutz, M.; Piechon, P.; Buser, T.; Stowasser, F.; Schulze, K.; Belluset, M. Comparison of quantitative methods for analysis of polyphasic pharmaceuticals. J. Therm. Anal. Calorim. 2007, 89, 729–743. [Google Scholar] [CrossRef]
- Kaye, S.B. New antimetabolites in cancer chemotherapy and their clinical impact. Br. J. Cancer 1998, 78 (Suppl. S3), 1–7. [Google Scholar] [CrossRef] [PubMed]
- van Laar, J.A.M.; Rustum, Y.M.; Ackland, S.P.; van Groeningen, C.J.; Peters, G.J. Comparison of 5-fluoro-2′-deoxyuridine with 5-fluorouracil and their role in the treatment of colorectal cancer. Eur. J. Cancer 1998, 34, 296–306. [Google Scholar] [CrossRef]
- Bauer, B.; Mally, A.; Liedtke, D. Zebrafish embryos and larvae as alternative animal models for toxicity testing. Int. J. Mol. Sci. 2021, 22, 13417. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, I. Application of zebrafish to safety evaluation in drug discovery. Toxicol. Pathol. 2020, 33, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, Y.; Zhou, R.; Yang, Y.; Bu, Y. The effect of combined exposure of zinc and nickel on the development of zebrafish. J. Appl. Toxicol. 2021, 41, 1765–1778. [Google Scholar] [CrossRef] [PubMed]
- De Luca, E.; Zaccaria, G.M.; Hadhoud, M.; Rizzo, G.; Ponzini, R.; Morbiducci, U.; Santoro, M.M. ZebraBeat: A flexible platform for the analysis of the cardiac rate in zebrafish embryos. Sci. Rep. 2014, 4, 4898. [Google Scholar] [CrossRef]
- Bambino, K.; Chu, J. Zebrafish in toxicology and environmental health. Curr. Top. Dev. Biol. 2017, 124, 331–367. [Google Scholar] [PubMed]
- von Hellfeld, R.; Brotzmann, K.; Baumann, L.; Strecker, R.; Braunbeck, T. Adverse effects in the fish embryo acute toxicity (FET) test: A catalogue of unspecific morphological changes versus more specific effects in zebrafish (Danio rerio) embryos. Environ. Sci. Eur. 2020, 32, 122. [Google Scholar] [CrossRef]
- OECD Guidelines for the Testing of Chemicals, Test No. 236: Fish Embryo Acute Toxicity (FET) Test; OECD: Paris, France, 2013.
- Available online: http://www.organic-chemistry.org/prog/peo/ (accessed on 14 November 2024).
- Fan, P.; Zhang, Y.; Liu, L.; Zhao, Z.; Yin, Y.; Xiao, X.; Bauer, N.; Gladkich, J.; Mattern, J.; Gao, C.; et al. Continuous exposure of pancreatic cancer cells to dietary bioactive agents does not induce drug resistance unlike chemotherapy. Cell Death Dis. 2016, 7, e2246. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, Q.; Zhao, H.; Liu, T.; Wu, H.; Shen, Q.; Wang, C.; Yin, T. Gemcitabine treatment promotes pancreatic cancer stemness through the Nox/ROS/NF-κB/STAT3 signaling cascade. Cancer Lett. 2016, 382, 53–63. [Google Scholar] [CrossRef]
- Available online: http://www.molinspiration.com (accessed on 14 November 2024).
- Taliani, S.; Pugliesi, I.; Barresi, E.; Simorini, F.; Salerno, S.; La Motta, C.; Marini, A.M.; Cosimelli, B.; Cosconati, S.; Di Maro, S.; et al. 3-Aryl-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one: A novel template for the design of highly selective A2B adenosine receptor antagonists. J. Med. Chem. 2012, 55, 1490–1499. [Google Scholar] [CrossRef]
- Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. Chemical reactivity properties and bioactivity scores of the angiotensin II vasoconstrictor octapeptide. In Cheminformatics and Its Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Hussein, Y.T.; Azeez, Y.H. DFT analysis and in silico exploration of drug-likeness, toxicity prediction, bioactivity score, and chemical reactivity properties of the urolithins. J. Biomol. Struct. Dyn. 2023, 41, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, A.; Muthu, S.; Narayana, B. Molecular structure determination, bioactivity score, spectroscopic and quantum computational studies on (E)-N’-(4-chlorobenzylidene)-2-(napthalen-2-yloxy) acetohydrazide. J. Mol. Struct. 2021, 1241, 130558. [Google Scholar] [CrossRef]
- Guo, Y. Impact of solid-state characteristics to the physical stability of drug substance and drug product. In Handbook of Stability Testing in Pharmaceutical Development; Huynh-Ba, K., Ed.; Springer Science+Business Media, LLC: New York, NY, USA, 2009. [Google Scholar]
- Giechaskiel, B.; Clairotte, M. Fourier Transform Infrared (FTIR) spectroscopy for measurements of vehicle exhaust emissions: A review. Appl. Sci. 2021, 11, 7416. [Google Scholar] [CrossRef]
- Dammers, E.; Vigouroux, C.; Palm, M.; Mahieu, E.; Warneke, T.; Smale, D.; Langerock, B.; Franco, B.; Van Damme, M.; Schaap, M.; et al. Retrieval of ammonia from ground-based FTIR solar spectra. Atmos. Chem. Phys. 2015, 15, 12789–12803. [Google Scholar] [CrossRef]
- Griffith, D.W.T.; Galle, B. Flux measurements of NH3, N2O and CO2 using dual beam FTIR spectroscopy and the flux–gradient technique. Atmos. Environ. 2000, 34, 1087–1098. [Google Scholar] [CrossRef]
- Bai, M.; Suter, H.; Lam, S.K.; Davies, R.; Flesch, T.K.; Chen, D. Gaseous emissions from an intensive vegetable farm measured with slant-path FTIR technique. Agric. For. Meteorol. 2018, 258, 50–55. [Google Scholar] [CrossRef]
- Mellau, G.C.; Winnewisser, B.P.; Winnewisser, M. Near infrared emission spectrum of HCN. J. Mol. Spectrosc. 2008, 249, 23–42. [Google Scholar] [CrossRef]
- Choi, K.N.; Barker, E.F. Infrared absorption spectrum of hydrogen cyanide. Phys. Rev. 1932, 42, 777. [Google Scholar] [CrossRef]
- Cataldo, F.; Lilla, E.; Ursini, O.; Angelini, G. TGA-FT-IR study of pyrolysis of poly(hydrogen cyanide) synthesized from thermal decomposition of formamide. Implications in cometary emissions. J. Anal. Appl. Pyrolysis 2010, 87, 34–44. [Google Scholar] [CrossRef]
- Supeng, L.; Guirong, B.; Hua, W.; Fashe, L.; Yizhe, L. TG-DSC-FTIR analysis of cyanobacteria pyrolysis. Phys. Procedia 2012, 33, 657–662. [Google Scholar] [CrossRef]
- Gibier, M.; Girods, P.; Rogaume, Y. Development of an original and easy method for isocyanic acid (HNCO) calibration on FTIR spectrometer. Vib. Spectrosc. 2021, 116, 103290. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Yang, X.; Hu, L.; Liu, Y.; Wang, C. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG–FTIR. J. Anal. Appl. Pyrolysis 2007, 80, 247–253. [Google Scholar] [CrossRef]
- Ruzi, M.; Anderson, D.T. Photodissociation of N-methylformamide isolated in solid parahydrogen. J. Chem. Phys. 2012, 137, 194313. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C108883&Type=IR-SPEC&Index=0#IR-SPEC (accessed on 2 November 2024).
- Parkes, M.A.; Douglas, K.M.; Price, S.D. Ionization of acetonitrile. Int. J. Mass Spectrom. 2019, 438, 97–106. [Google Scholar] [CrossRef]
- Ma, Z.; Cheng, L.; Wang, Q.; Li, L.; Luo, G.; Zhang, W. Co-combustion characteristics and CO2 emissions of low-calorific multi-fuels by TG-FTIR analysis. Energy 2022, 252, 123919. [Google Scholar] [CrossRef]
- Kaljuvee, T.; Pelt, J.; Radin, M. TG-FTIR study of gaseous compounds evolved at thermooxidation of oil shale. J. Therm. Anal. Calorim. 2004, 78, 399–414. [Google Scholar] [CrossRef]
- Park, K.B.; Kim, J.S. Pyrolysis products from various types of plastics using TG-FTIR at different reaction temperatures. J. Anal. Appl. Pyrolysis 2023, 171, 105983. [Google Scholar] [CrossRef]
- Roithova, J.; Schroder, D.; Loos, J.; Schwarz, H.; Jankowiak, H.C.; Berger, R.; Thissen, R.; Dutuit, O. Revision of the second ionization energy of toluene. J. Chem. Phys. 2005, 122, 094306. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Wang, Z.; Guo, S.; Hao, Y.; Gao, Y.; Xin, M.; Ran, Y.; Li, S.; Ji, R.; et al. Kinetic analysis and pyrolysis behaviour of pine needles by TG-FTIR and Py-GC/MS. BioResources 2023, 18, 6412–6429. [Google Scholar] [CrossRef]
- Liu, X.; Tian, K.; Chen, Z.; Wei, W.; Xu, B.; Ni, B.J. Online TG-FTIR-MS analysis of the catalytic pyrolysis of polyethylene and polyvinyl chloride microplastics. J. Hazard. Mater. 2023, 441, 129881. [Google Scholar] [CrossRef]
- Kao, M.H.; Orr-Ewing, A.J. Charge-separated reactive intermediates from the UV photodissociation of chlorobenzene in solution. J. Phys. Chem. A 2022, 126, 6934–6943. [Google Scholar] [CrossRef]
- Zhu, H.M.; Jiang, X.; Yan, J.H.; Chi, Y.; Cen, K.F. TG-FTIR analysis of PVC thermal degradation and HCl removal. J. Anal. Appl. Pyrolysis 2008, 82, 1–9. [Google Scholar] [CrossRef]
- Shamsipur, M.; Pourmortazavi, S.M.; Beigi, A.A.M.; Heydari, R.; Khatibi, M. Thermal stability and decomposition kinetic studies of acyclovir and zidovudine drug compounds. AAPS PharmSciTech 2013, 14, 287–293. [Google Scholar] [CrossRef]
- Yoshida, M.I.; Gomes, E.C.; Soares, C.D.; Oliveira, M.A. Thermal behavior study and decomposition kinetics of amiodarone hydrochloride under isothermal conditions. Drug Dev. Ind. Pharm. 2011, 37, 638–647. [Google Scholar] [CrossRef]
- Le Count, D.J.; Taylor, P.J. The infrared spectra of fused 1,2,4-triazin-5-ones. Tetrahedron 1975, 31, 433–435. [Google Scholar] [CrossRef]
- Huong, P.L.; Kolk, A.H.; Eggelte, T.A.; Verstijnen, C.P.; Gilis, H.; Hendriks, J.T. Measurement of antigen specific lymphocyte proliferation using 5-bromodeoxyuridine incorporation: An easy and low cost alternative to radioactive thymidine incorporation. J. Immunol. Methods 1991, 140, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Magaud, J.P.; Sargent, I.; Mason, D.Y. Detection of human white cell proliferative responses by immunoenzymatic measurement of bromodeoxyuridine uptake. J. Immunol. Methods 1988, 106, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Muir, D.; Varon, S.; Manthorpe, M. An enzyme-linked immunosorbent assay for bromodeoxyuridine incorporation using fixed microcultures. Anal. Biochem. 1990, 185, 377–382. [Google Scholar] [CrossRef]
- Sztanke, M.; Rzymowska, J.; Sztanke, K. Synthesis, structure elucidation and identification of antiproliferative activities of a novel class of thiophene bioisosteres bearing the privileged 7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-one scaffold. Bioorg. Med. Chem. 2015, 23, 3448–3456. [Google Scholar] [CrossRef]
- Finney, D.J. Probit analysis. J. Inst. Actuaries 1952, 78, 388–390. [Google Scholar]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, L276, 33–79.
- Ostasz, A.; Łyszczek, R.; Sztanke, K.; Sztanke, M. TG-DSC and TG-FTIR studies of annelated triazinylacetic acid ethyl esters—Potential anticancer agents. Molecules 2023, 28, 1735. [Google Scholar] [CrossRef] [PubMed]
Comp. | R | Incubation Time | Antiproliferative Activity | |||||
---|---|---|---|---|---|---|---|---|
GMK | A549 | HeLa | TOV112D | T47D | HL-60 | |||
1 | Ph | 24 h | 0 | 10 ± 0.1 | 50 ± 0.4 ** | 50 ± 0.3 * | 10 ± 0.2 | 0 |
48 h | 10 ± 0.1 | 50 ± 0.3 ** | 80 ± 0.4 ** | 80 ± 1.2 ** | 20 ± 0.2 * | 15 ± 0.2 | ||
72 h | 30 ± 0.2 * | 90 ± 0.7 ** | 100 ± 1.2 ** | 98 ± 0.9 ** | 90 ± 1.6 ** | 25 ± 0.5 * | ||
2 | 4-CH3Ph | 24 h | 0 | 15 ± 0.5 | 50 ± 0.3 * | 60 ± 1.2 ** | 10 ± 0.1 | 5 ± 0.3 |
48 h | 15 ± 0.1 | 60 ± 0.3 * | 60 ± 0.4 * | 90 ± 0.9 ** | 25 ± 0.3 * | 25 ± 0.8 * | ||
72 h | 75 ± 0.5 ** | 90 ± 0.8 ** | 100 ± 0.9 ** | 100 ± 1.5 ** | 95 ± 1.2 ** | 45 ± 0.7 * | ||
3 | 4-OCH3Ph | 24 h | 0 | 20 ± 0.1 | 90 ± 0.8 ** | 40 ± 0.6 ** | 10 ± 0.2 | 15 ± 0.6 |
48 h | 20 ± 0.2 * | 60 ± 0.4 ** | 98 ± 0.8 ** | 85 ± 0.9 ** | 15 ± 0.2 | 20 ± 0.6 | ||
72 h | 40 ± 0.3 * | 90 ± 0.6 ** | 100 ± 0.9 ** | 100 ± 1.5 ** | 100 ± 0.9 ** | 45 ± 1.5 * | ||
4 | 3-ClPh | 24 h | 0 | 10 ± 0.2 | 80 ± 0.5 ** | 55 ± 1.3 * | 10 ± 0.5 | 20 ± 0.7 |
48 h | 25 ± 0.2 * | 75 ± 0.5 ** | 100 ± 0.7 ** | 90 ± 0.7 ** | 45 ± 0.8 ** | 25 ± 0.8 * | ||
72 h | 35 ± 0.4 * | 85 ± 0.5 ** | 100 ± 0.9 ** | 100 ± 0.9 ** | 85 ± 1.2 ** | 50 ± 1.4 * | ||
5 | 4-ClPh | 24 h | 0 | 15 ± 0.2 | 90 ± 0.7 ** | 35 ± 1.4 * | 5 ± 0.2 | 10 ± 0.5 |
48 h | 35 ± 0.2 * | 65 ± 0.4 * | 100 ± 1.1 ** | 95 ± 0.8 ** | 15 ± 0.4 | 15 ± 0.6 | ||
72 h | 40 ± 0.3 * | 90 ± 0.6 ** | 100 ± 0.9 ** | 100 ± 0.8 ** | 75 ± 0.7 ** | 55 ± 1.6 * | ||
6 | 3,4-Cl2Ph | 24 h | 0 | 20 ± 0.2 | 75 ± 1.2 ** | 30 ± 0.8 * | 0 | 25 ± 0.8 |
48 h | 15 ± 0.1 | 75 ± 0.6 ** | 100 ± 0.9 ** | 90 ± 1.8 ** | 75 ± 1.6 ** | 35 ± 1.5 * | ||
72 h | 30 ± 0.2 * | 95 ± 0.7 ** | 100 ± 0.9 ** | 100 ± 1.6 ** | 100 ± 1.4 ** | 45 ± 1.8 * | ||
Standard drug | 24 h | 0 | 25 ± 0.7 | 25 ± 0.8 * | 35 ± 0.7 * | 2 ± 0.1 | 15 ± 0.5 | |
48 h | 45 ± 1.3 * | 80 ± 1.6 ** | 80 ± 1.2 ** | 75 ± 0.9 ** | 5 ± 0.3 | 25 ± 1.4 * | ||
72 h | 55 ± 0.9 * | 95 ± 1.8 ** | 100 ± 0.9 ** | 100 ± 1.8 ** | 55 ± 0.8 ** | 35 ± 0.9 * |
Compound | R | MNLC (µM) a | LC50 (95% CL b, µM) | NOAEC (µM) | LOAEC (µM) |
---|---|---|---|---|---|
1 | Ph | 100 ± 0.0 | 149 (125–178) | 100 | 125 |
2 | 4-CH3Ph | 75 ± 0.0 | 115 (94–141) | 75 | 100 |
3 | 4-OCH3Ph | 117 ± 14.4 | 153 (128–183) | 100 | 125 |
4 | 3-ClPh | 92 ± 14.4 | 140 (119–166) | 75 | 100 |
5 | 4-ClPh | 100 ± 0.0 | 144 (119–175) | 100 | 125 |
6 | 3,4-Cl2Ph | 83 ± 14.4 | 119 (93–153) | 75 | 100 |
Standard drug c | 58 ± 14.4 | 104 (85–127) | 50 | 75 |
Compound | R | Haemolytic Activity (%) in Relation to Triton X-100 | Antihaemolytic Activity (%) in Relation to | |
---|---|---|---|---|
AA | Trolox | |||
1 | Ph | 6.99 ± 0.39 | 70 ± 6.1 | 67 ± 4.8 |
2 | 4-CH3Ph | 5.42 ± 0.29 | 72 ± 5.8 | 68 ± 5.1 |
3 | 4-OCH3Ph | 3.93 ± 0.22 | 85 ± 6.0 | 81 ± 7.1 |
4 | 3-ClPh | 4.13 ± 0.37 | 59 ± 4.1 | 56 ± 3.3 |
5 | 4-ClPh | 5.08 ± 0.30 | 64 ± 4.8 | 63 ± 4.2 |
6 | 3,4-Cl2Ph | 5.35 ± 0.51 | 68 ± 5.4 | 64 ± 3.7 |
Compound | Drug Score | Mutagenicity | Tumorigenicity | Irritating Effects | Reproductive Toxicity |
---|---|---|---|---|---|
1 | 0.89 | ||||
2 | 0.86 | ||||
3 | 0.88 | ||||
4 | 0.82 | ||||
5 | 0.82 | ||||
6 | 0.71 | ||||
GEM | 0.29 |
Compound | Bioactivity Score | |||||
---|---|---|---|---|---|---|
GPCR Ligand | Ion Channel Modulator | Enzyme Inhibitor | Protease Inhibitor | Kinase Inhibitor | Nuclear Receptor Ligand | |
1 | −0.72 | −0.97 | −0.63 | −1.34 | −0.92 | −1.42 |
2 | −0.67 | −0.98 | −0.62 | −1.26 | −0.87 | −1.30 |
3 | −0.60 | −0.95 | −0.57 | −1.17 | −0.77 | −1.17 |
4 | −0.64 | −0.92 | −0.64 | −1.31 | −0.83 | −1.32 |
5 | −0.63 | −0.92 | −0.61 | −1.27 | −0.84 | −1.30 |
6 | −0.55 | −0.86 | −0.58 | −1.19 | −0.73 | −1.18 |
Compound | R | Inert Atmosphere | Oxidative Atmosphere | ||||
---|---|---|---|---|---|---|---|
Tonset/°C | Tmelt/°C | ΔH/J/g | Tonset/°C | Tmelt/°C | ΔH/J/g | ||
1 | Ph | 224.7 | 226.8 | 172.8 | 223.5 | 225.3 | 175.3 |
2 | 4-CH3Ph | 219.6 | 221.3 | 163.6 | 218.6 | 220.4 | 164.6 |
3 | 4-OCH3Ph | 219.6 | 221.7 | 185.5 | 218.3 | 220.7 | 187.5 |
4 | 3-ClPh | 217.5 | 219.6 | 139.2 | 216.2 | 218.7 | 140.9 |
5 | 4-ClPh | 223.6 | 225.3 | 116.3 | 222.1 | 224.6 | 118.4 |
6 | 3,4-Cl2Ph | 243.3 | 245.7 | 135.5 | 242.2 | 244.3 | 137.2 |
Compound | R | Decomposition Process | |||
---|---|---|---|---|---|
First Decomposition Stage | |||||
T5%/°C | Tmax1/°C | Δm1/% | rm/% | ||
1 | Ph | 248.6 | 320.5 | 98.9 | 1.1 |
2 | 4-CH3Ph | 263.3 | 331.6 | 100 | 0 |
3 | 4-OCH3Ph | 274.7 | 344.6 | 100 | 0 |
4 | 3-ClPh | 230.2 | 321.3 | 100 | 0 |
5 | 4-ClPh | 236.7 | 328.6 | 100 | 0 |
6 | 3,4-Cl2Ph | 284.2 | 351.2 | 100 | 0 |
Comp. | R | Decomposition Process | ||||
---|---|---|---|---|---|---|
First Decomposition Stage | Second Decomposition Stage | |||||
T5%/°C | Tmax1/Tmax1′/°C | Δm1/% | Tmax2/°C | Δm2/% | ||
1 | Ph | 261.4 | 341.3 | 86.1 | 583.3 | 16.9 |
2 | 4-CH3Ph | 272.4 | 344.0 | 82.9 | 560.3 | 17.1 |
3 | 4-OCH3Ph | 282.2 | 345.1 | 65.7 | 571.0 | 35.3 |
4 | 3-ClPh | 281.5 | 338.3 | 79.2 | 585.3 | 20.8 |
5 | 4-ClPh | 288.3 | 349.1 | 69.6 | 603.1 | 27.1 |
6 | 3,4-Cl2Ph | 295.5 | 355.8 | 61.5 | 543.5 | 39.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Worzakowska, M.; Sztanke, M.; Rzymowska, J.; Sztanke, K. In Vitro, In Vivo, Ex Vivo Characterisation of Dihydroimidazotriazinones and Their Thermal Decomposition Course Studied by Coupled and Simultaneous Thermal Analysis Methods. Int. J. Mol. Sci. 2025, 26, 541. https://doi.org/10.3390/ijms26020541
Worzakowska M, Sztanke M, Rzymowska J, Sztanke K. In Vitro, In Vivo, Ex Vivo Characterisation of Dihydroimidazotriazinones and Their Thermal Decomposition Course Studied by Coupled and Simultaneous Thermal Analysis Methods. International Journal of Molecular Sciences. 2025; 26(2):541. https://doi.org/10.3390/ijms26020541
Chicago/Turabian StyleWorzakowska, Marta, Małgorzata Sztanke, Jolanta Rzymowska, and Krzysztof Sztanke. 2025. "In Vitro, In Vivo, Ex Vivo Characterisation of Dihydroimidazotriazinones and Their Thermal Decomposition Course Studied by Coupled and Simultaneous Thermal Analysis Methods" International Journal of Molecular Sciences 26, no. 2: 541. https://doi.org/10.3390/ijms26020541
APA StyleWorzakowska, M., Sztanke, M., Rzymowska, J., & Sztanke, K. (2025). In Vitro, In Vivo, Ex Vivo Characterisation of Dihydroimidazotriazinones and Their Thermal Decomposition Course Studied by Coupled and Simultaneous Thermal Analysis Methods. International Journal of Molecular Sciences, 26(2), 541. https://doi.org/10.3390/ijms26020541