The Molecular Biology of Placental Transport of Calcium to the Human Foetus
<p>Development and implantation of the blastocyst. Compiled from Burton GJ and Jauniaux E 2021 [<a href="#B6-ijms-26-00383" class="html-bibr">6</a>], Mitchell B and Sharma R 2005 [<a href="#B39-ijms-26-00383" class="html-bibr">39</a>], Harrison RG 1963 [<a href="#B40-ijms-26-00383" class="html-bibr">40</a>], and Sadler TW 2023 [<a href="#B41-ijms-26-00383" class="html-bibr">41</a>]; ~, approximately.</p> "> Figure 2
<p>Section of a human placenta showing three cotyledons separated by septa (S). Within each of these is a mass of foetal villi branching from a primary villous stem anchored to the decidua basalis, which forms the maternal placenta. The villi are covered by trophoblasts: an inner layer of cytotrophoblasts and an outer layer of syncytiotrophoblasts. These erode the walls of small uterine spiral arteries, and the blood empties into the intervillous spaces. The highly branched terminal villi (red arrows) float freely in a lake of maternal blood. Nutrients and minerals pass from mother to foetus, but there is no continuity between foetal and maternal circulations. AM, amnion; U.A., umbilical arteries; U.V., umbilical vein; UT.A., uterine artery; V., uterine vein. Source: Harrison RG: A Textbook of Human Embryology 2nd Ed. Blackwell Scientific Publications Ltd. Oxford 1963 [<a href="#B40-ijms-26-00383" class="html-bibr">40</a>]. Figure 35 reproduced with permission from Wiley-Blackwell, John Wiley and Sons.</p> "> Figure 3
<p>Proposed scheme in which ezrin bridges the scaffolding protein NHERF1 and the actin skeleton, so stabilising proteins in the microvillar membrane and connecting them with cytosolic signalling complexes. (i) In a dormant form, the C-terminal tail of ezrin binds to the N-terminal and closes the molecule. (ii) Phosphorylation of residues located between the N- and C-terminals blocks the association and opens the ezrin molecule. (iii) The freed C-terminal binds to actin; the N-terminal binds to the scaffolding protein NHERF1 associated with the plasma membrane. (iv) NHERF1 connects membrane-associated proteins with transiently assembled cytosolic signalling complexes. NaPi-2a, PTH1R, and NHE3 are shown as examples. NaPi-2a, sodium–phosphate cotransporter 2a; NHE3, sodium–hydrogen exchanger 3; NHERF1, Na<sup>+</sup>/H<sup>+</sup> exchanger regulatory factor 1; PTH1R, parathyroid hormone 1 receptor.</p> "> Figure 4
<p>Schematic of Na<sup>+</sup>/H<sup>+</sup> exchanger regulatory factor 1 (NHERF1) based on the models of Zhang et al. (2019) [<a href="#B62-ijms-26-00383" class="html-bibr">62</a>] and Bhattycharia et al. (2019) [<a href="#B63-ijms-26-00383" class="html-bibr">63</a>]. GYGF, core PDZ-binding motif; PPI, protein-phosphatase-1-binding site; S290, key phosphorylation site.</p> "> Figure 5
<p>Phospholipase C releases inositol trisphosphate from phosphatidylinositol 4,5 bisphosphate (PIP2). Arachidonic acid is released from PIP2 by phospholipase A2.</p> "> Figure 6
<p>Structure of TRPV6, as deduced from structural studies (PDB codes 5IWK, 5IWP, and 62EF) [<a href="#B132-ijms-26-00383" class="html-bibr">132</a>,<a href="#B133-ijms-26-00383" class="html-bibr">133</a>,<a href="#B134-ijms-26-00383" class="html-bibr">134</a>]. (<b>A</b>) Side and (<b>B</b>) top views of the four TRPV6 monomers, displayed as ribbons with α-helices and β-sheets as cylinders and arrows, respectively. Three monomers are coloured uniformly (purple, blue, and dark pink); one monomer is differentially coloured to highlight crucial regions: N-terminal helix (yellow), ankyrin repeats (cyan), intracellular N-terminal region (dark green), membrane region (green), and intra-cellular C-terminal region (orange). The Ca<sup>2+</sup> ion in the pore is displayed as a yellow ball. (<b>C</b>) Schematic overview of secondary structural elements and other structural features. Colour coding as in panels (<b>A</b>,<b>B</b>). Note that the C-terminal helices 1–3 (CtH1–3; light orange) are not observed in the 5IWK structure displayed in panels (<b>A</b>,<b>B</b>,<b>D</b>). (<b>D</b>) Close-up of the TRPV6 pore-forming region. The ion selectivity filter forming the side chains of D542 and surrounding residues are shown in ball-and-stick representation, colour-coded on a by-atom-type basis. The carboxylic groups lining the pore are clearly visible. The ion selectivity filter is the narrowest part of the channel. This figure was published in <span class="html-italic">Advances in Clinical Chemistry</span>, vol. 113, Walker V, Vuister GW, Biochemistry and pathophysiology of the transient potential receptor vanilloid 6 (TRPV6) calcium channel, pp 43–100, 2023 [<a href="#B115-ijms-26-00383" class="html-bibr">115</a>]. Copyright Elsevier. Reproduced with permission.</p> "> Figure 7
<p>The domains of STIM1 and their functions [<a href="#B61-ijms-26-00383" class="html-bibr">61</a>,<a href="#B185-ijms-26-00383" class="html-bibr">185</a>,<a href="#B187-ijms-26-00383" class="html-bibr">187</a>]: SP, signal peptide; EF1 and EF2, EF-hand domains; SAM, sterile alpha motif; TM, transmembrane domain; CC1, CC2, and CC3, coiled-coil domains; CAD, CRAC activation domain; SOAR, STIM-Orai activating domain; ID, inactivation domain; STIM1L, a peptide insert; P/S, proline/serine-rich peptide; EB, EB1-binding domain; PBD, polybasic domain; U, peptide sequences.</p> "> Figure 8
<p>Binding of activated STIM1 to Orai1 to open the Orai1 channel for Ca<sup>2+</sup> influx. SAM, sterile alpha motif; TM, transmembrane domain; CC1, CC2, and CC3, coiled-coil domains; PBD, polybasic domain; PIP2, phosphatidylinositol 4,5 bisphosphate.</p> "> Figure 9
<p>Store-operated calcium entry (SOCE). (<b>A</b>) (1) Agonist stimulation of a membrane receptor (2) activates phospholipase C (PLC), releasing inositol trisphosphate (IP3), and (3) IP3 activates the IP3 receptor in the ER membrane, leading to release of Ca<sup>2+</sup> into the cytosol to activate signalling cascades. Some Ca<sup>2+</sup> is taken into mitochondria, and (4) surplus Ca<sup>2+</sup> is extruded from the cytosol by plasma membrane Ca<sup>2+</sup>-ATPase 1 (PMCA1) and/or the NCX Na<sup>+</sup>/Ca<sup>2+</sup> exchanger. (<b>B</b>) (5) Ca<sup>2+</sup> depletion in the endoplasmic reticulum (ER) activates the Ca<sup>2+</sup> sensor STIM1, and (6) activated STIM1 binds to Orai1 in the plasma membrane, opening the channel for Ca<sup>2+</sup> entry. (7) Activated STIM1 can also associate with transient receptor C (TRPC) proteins, opening their channels for Ca<sup>2+</sup> entry. (8) Imported Ca<sup>2+</sup> is transported into the ER by sarcoendoplasmic reticulum Ca<sup>2+</sup> ATPase (SERCA) to replenish the ER stores.</p> ">
Abstract
:1. Introduction
- Section A: The Placenta: Laying the Foundation
2. Placental Development
Terminal Villi: Actin, Ezrin, and NHERFI/EBP50
- Section B: Tools for Controlling intracellular Ca2+: Ca2+ Channels and Transporters
3. Sources and Removal of Cytosolic Ca2+
3.1. Phospholipase C
3.2. PLCζ (Zeta)
4. Ca2+ Importation Across the Plasma Membrane
4.1. Transient Receptor Potential Channels (TRPs)
4.2. Transient Receptor Potential Vanilloid 6 (TRPV6)
4.2.1. Structure and Operation
4.2.2. Associated Proteins
4.2.3. TRPV6 Deficiency in Pregnancy
4.2.4. TRPV6 Membrane Expression: S100A10 and Annexin A2
5. Store-Operated Ca2+ Entry (SOCE)
5.1. CRAC/Orai1 Entry Channel
5.2. Stromal Interaction Molecule 1 and 2 (STIM1 and STIM2)
5.3. SOCE in the Placenta
6. Ca2+ Clearance from the Cytosol
6.1. Sarcoplasmic/Endoplasmic Reticulum Ca 2+-ATPase, (SERCA)
6.2. Plasma Membrane Calcium ATPase (PMCA)
6.3. Sodium–Calcium Exchangers (NCX)
7. Transcellular Calcium Transport to the Foetus
7.1. The Working Model Proposed for Postnatal Intestinal Ca2+ Absorption
7.2. Transcellular Ca2+ Transport in the Placenta
- Section C: Effects of Peptides and Hormones on Placental Ca2+ Transport
8. Insulin-like Growth Factor 2 (IGF2)
Pathophysiology
9. PTH and PTH-Related Peptide (PTHrP and PTHLH)
9.1. The PTH/PTHrP Receptor (PTH1R)
9.2. Roles in the Embryo and Foetus
10. The Calcium-Sensing Receptor (CaSR)
10.1. Mutations of the CaSR in Mice
10.2. Mutations of the CaSR in Humans
11. Calcitonin and Calcitonin Gene-Related Peptide (CGRP)
11.1. Calcitonin
11.2. The Calcitonin Receptor (CALCR, CTR)
11.3. CGRP, the Calcitonin Receptor-like Receptor (CRLR), and the Functional CGRP Receptor
11.4. Calcitonin and CGRP in Regulation of Mineral Status
12. Vitamin D and Placental Ca2+ Transport
12.1. Importation of 25OHD and Activation to 1,25(OH)2D
12.2. From Generation of 1,25(OH)2D3 to Activation of Gene Translation
12.3. 1,25(OH)2D/VDR in Ca2+ Regulation in Pregnancy
13. Genetic Disorders of Placental Ca2+ Transport
- Section D: The Developmental Origins of Health and Disease (DOHaD) and Postnatal Bone Development
14. DOHaD and Postnatal Bone Development
14.1. Evidence for an Association of Intrauterine Factors with Bone Health in Later Life
14.1.1. Observational Epidemiologic Studies
14.1.2. Intervention Studies in Which Women Received a Vitamin D Supplement
14.2. Epigenetic Processes and DOHaD
15. Discussion
- The mechanisms of trafficking transporters and ion channels to and from the apical membranes of placental villi.
- Whether NHERF1 is expressed in placental villi and, if expression is confirmed, the roles of this scaffold in villi.
- The roles of ezrin in placental villi.
- Whether calbindin D9k is expressed in the villus syncytium.
- How Ca2+ absorbed for export to the foetus is chaperoned or transported across the trophoblast safely for extrusion.
- Whether Orai1 and STIM1 are expressed by syncytiotrophoblasts.
- The roles of Ca2+-CaM in mediating SOCE in the syncytiotrophoblasts.
- The roles of PTHrP mid-molecular residues in regulating DNA transcription, particularly of genes involved in Ca2+ transport.
- Whether CGRP is expressed in the placenta and, if so, its likely roles.
- Although not relevant to Ca2+ transport, it might be of wider interest to find out whether calcitonin or CGRP interacts with TRPM7 or TRPM6.
- Whether placental metabolism of vitamin D is disturbed in gestational diabetes and pre-eclampsia.
- Whether pregnancy-specific beta-1-glycoproteins PSG1 and PSG9 increase endothelial NO production and placental blood flow by increasing Orai1 expression.
16. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Definitions and Abbreviations
Definitions | |
Embryo (human) | A conceptus from fertilisation to the end of 8 weeks pf. (postfertilisation) approximately10 weeks following the last menstrual period (LMP). |
Foetus (human) | A conceptus from 9 weeks pf. to term at 38 weeks pf. (approximately 11 to 40 weeks post-LMP). |
Preterm birth | 20 weeks to 37 weeks following LMP: term birth, 37 weeks to 41 weeks 6 days. |
Trimesters | First, up to 13 weeks following LMP; second, 13 to 28 weeks; third, 29 weeks to 40 weeks or until birth. |
Intrauterine growth restriction (IUGR) | Birth weight < 10th percentile for gestational age and below the genetic growth potential. |
Labyrinth | The inner compartment of rodent placenta that contains the highly branched microvilli, which undertake nutrient exchange. |
Abbreviations | |
ANXA2 | Annexin A2 |
BBM | Brush-border membrane |
CaBP | Ca2+-binding protein |
CaBP-9k | Calbindin-D9K |
CGRP | Calcitonin gene-related peptide |
CaM | Calmodulin |
CALCR (CTR) | The calcitonin receptor |
CaSR | The calcium-sensing receptor |
CRAC | Ca2+ release-activated Ca2+ channels |
CRLR | The calcitonin gene-related peptide receptor |
DOHaD | Developmental origins of health and disease |
ERM | Ezrin, radixin, myosin protein family |
EBP50 | Ezrin-binding protein 50 kDa |
ER | Endoplasmic reticulum |
IGF1 | Insulin-like growth factor 1 |
IGF2 | Insulin-like growth factor 2 |
IP3 | Inositol 1,4,5-trisphosphate |
NaPi-2a | Sodium-dependent phosphate transporter-2a SLC34A1 |
NCX | Na+/Ca2+ exchanger |
NHE3 | Sodium/hydrogen exchange factor3 |
NHERF1 | Na+/H+ exchange regulatory cofactor-1 |
Orai1 | Calcium release-activated calcium channel protein 1 |
PDZ | PSD-95/Discs-large/ZO1 domain PKA protein kinase A |
PET | Pre-eclamptic toxaemia |
pf. | Postfertilisation (=postconception) |
PIP2 | Phosphatidylinositol 4,5 bisphosphate |
PLA | Phospholipase A |
PLC | Phospholipase C |
PMCA | Plasma membrane Ca2+ ATPase |
PTH | Parathyroid hormone |
PTHrP | Parathyroid hormone related protein |
PTH1R | PTH/PTHrP 1 receptor |
S100A10 | Annexin II light chain (calpactin light chain, p11) |
S100G (S100 Calcium-Binding Protein G) | Gene for calbindin-D9K |
SERCA | Sarcoendoplasmic reticulum ATPase |
SOCE | Store-operated Ca2+ entry |
STIM1; STIM2 | Stromal interaction molecule 1 and 2 |
TRP | Transient receptor potential |
TRPC | Transient receptor potential canonical |
TRPM | Transient receptor potential melastatin |
TRPV | Transient receptor potential vanilloid |
References
- Kovacs, C.S. Bone development and mineral homeostasis in the fetus and neonate: Roles of the calciotropic and phosphotropic hormones. Physiol. Rev. 2014, 94, 1143–1218. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.J.; Powell, T.L.; Barrett, E.S.; Hardy, D.B. Developmental origins of metabolic diseases. Physiol. Rev. 2021, 101, 739–795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sferruzzi-Perri, A.N.; Sandovici, I.; Constancia, M.; Fowden, A.L. Placental phenotype and the insulin-like growth factors: Resource allocation to fetal growth. J. Physiol. 2017, 595, 5057–5093. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sandovici, I.; Georgopoulou, A.; Pérez-García, V.; Hufnagel, A.; López-Tello, J.; Lam, B.Y.H.; Schiefer, S.N.; Gaudreau, C.; Santos, F.; Hoelle, K.; et al. The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev. Cell 2022, 57, 63–79.e8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burton, G.J.; Jauniaux, E.; Charnock-Jones, D.S. Human early placental development: Potential roles of the endometrial glands. Placenta 2007, 28 (Suppl. A), S64–S69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burton, G.J.; Jauniaux, E. Placentation in the Human and Higher Primates. Adv. Anat. Embryol. Cell Biol. 2021, 234, 223–254. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wu, G.; Spencer, T.E.; Johnson, G.A.; Li, X.; Bazer, F.W. Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol. Reprod. 2009, 80, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Moniz, C.F.; Nicolaides, K.H.; Tzannatos, C.; Rodeck, C.H. Calcium homeostasis in second trimester fetuses. J. Clin. Pathol. 1986, 39, 838–841. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Panda, S.; Behera, S.; Alam, M.F.; Syed, G.H. Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion 2021, 58, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Ellery, P.M.; Cindrova-Davies, T.; Jauniaux, E.; Ferguson-Smith, A.C.; Burton, G.J. Evidence for transcriptional activity in the syncytiotrophoblast of the human placenta. Placenta 2009, 30, 329–334. [Google Scholar] [CrossRef]
- Cell types of the placenta. In Vascular Biology of the Placenta; Wang, Y., Zhao, S., Eds.; Chapter 4; Morgan & Claypool Life Sciences: San. Rafael, CA, USA, 20 January 2010. Available online: https://www.ncbi.nlm.nih.gov/books/NBK53245 (accessed on 29 December 2024).
- van Goor, M.K.C.; Hoenderop, J.G.J.; van der Wijst, J. TRP channels in calcium homeostasis: From hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Miura, S.; Sato, K.; Kato-Negishi, M.; Teshima, T.; Takeuchi, S. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat. Commun. 2015, 6, 8871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Demir, R.; Kaufmann, P.; Castellucci, M.; Erbengi, T.; Kotowski, A. Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anat. 1989, 136, 190–203. [Google Scholar] [CrossRef]
- Fowden, A.L.; Sferruzzi-Perri, A.N.; Coan, P.M.; Constancia, M.; Burton, G.J. Placental efficiency and adaptation: Endocrine regulation. J. Physiol. 2009, 587 Pt 14, 3459–3472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haché, S.; Takser, L.; LeBellego, F.; Weiler, H.; Leduc, L.; Forest, J.C.; Giguère, Y.; Masse, A.; Barbeau, B.; Lafond, J. Alteration of calcium homeostasis in primary preeclamptic syncytiotrophoblasts: Effect on calcium exchange in placenta. J. Cell Mol. Med. 2011, 15, 654–667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gluckman, P.D.; Hanson, M.A.; Cooper, C.; Thornburg, K.L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 2008, 359, 61–73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cooper, C.; Westlake, S.; Harvey, N.; Javaid, K.; Dennison, E.; Hanson, M. Review: Developmental origins of osteoporotic fracture. Osteoporos. Int. 2006, 17, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Chacham, S.; Pasi, R.; Chegondi, M.; Ahmad, N.; Mohanty, S.B. Metabolic Bone Disease in Premature Neonates: An Unmet Challenge. J. Clin. Res. Pediatr. Endocrinol. 2020, 12, 332–339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, H.C.; Liu, J.; Profit, J.; Hintz, S.R.; Gould, J.B. Survival Without Major Morbidity Among Very Low Birth Weight Infants in California. Pediatrics 2020, 146, e20193865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wooding, F.B.; Morgan, G.; Jones, G.V.; Care, A.D. Calcium transport and the localisation of calbindin-D9k in the ruminant placenta during the second half of pregnancy. Cell Tissue Res. 1996, 285, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Walker, V.; Bennet, L.; Mills, G.A.; Green, L.R.; Gnanakumaran, K.; Hanson, M.A. Effects of hypoxia on urinary organic acid and hypoxanthine excretion in fetal sheep. Pediatr. Res. 1996, 40, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Walker, V.; Gentry, A.J.; Green, L.R.; Hanson, M.A.; Bennet, L. Effects of hypoxia on plasma amino acids of fetal sheep. Amino Acids 2000, 18, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Rossant, J.; Cross, J.C. Placental development: Lessons from mouse mutants. Nat. Rev. Genet. 2001, 2, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.L.; McGowen, M.R.; Weckle, A.; Pantham, P.; Caravas, J.; Agnew, D.; Benirschke, K.; Savage-Rumbaugh, S.; Nevo, E.; Kim, C.J.; et al. The core transcriptome of mammalian placentas and the divergence of expression with placental shape. Placenta 2017, 57, 71–78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hughes, D.A.; Kircher, M.; He, Z.; Guo, S.; Fairbrother, G.L.; Moreno, C.S.; Khaitovich, P.; Stoneking, M. Evaluating intra- and inter-individual variation in the human placental transcriptome. Genome Biol. 2015, 16, 54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sood, R.; Zehnder, J.L.; Druzin, M.L.; Brown, P.O. Gene expression patterns in human placenta. Proc. Natl. Acad. Sci. USA 2006, 103, 5478–5483. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, H.; Wang, L.; Wang, Y.; Zhu, Q.; Aldo, P.; Ding, J.; Mor, G.; Liao, A. Establishment and characterization of a new human first trimester Trophoblast cell line, AL07. Placenta 2020, 100, 122–132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abbas, Y.; Turco, M.Y.; Burton, G.J.; Moffett, A. Investigation of human trophoblast invasion in vitro. Hum. Reprod. Update 2020, 26, 501–513. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.C.; Hsueh, Y.W.; Chang, C.W.; Hsu, H.C.; Yang, T.C.; Lin, W.C.; Chang, H.M. Establishment of the fetal-maternal interface: Developmental events in human implantation and placentation. Front. Cell Dev. Biol. 2023, 11, 1200330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hadjantonakis, A.K.; Siggia, E.D.; Simunovic, M. In vitro modeling of early mammalian embryogenesis. Curr. Opin. Biomed. Eng. 2020, 13, 134–143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rabussier, G.; Bünter, I.; Bouwhuis, J.; Soragni, C.; van Zijp, T.; Ng, C.P.; Domansky, K.; de Windt, L.J.; Vulto, P.; Murdoch, C.E.; et al. Healthy and diseased placental barrier on-a-chip models suitable for standardized studies. Acta Biomater. 2023, 164, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Lermant, A.; Rabussier, G.; Lanz, H.L.; Davidson, L.; Porter, I.M.; Murdoch, C.E. Development of a human iPSC-derived placental barrier-on-chip model. iScience 2023, 26, 107240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cox, B.; Leavey, K.; Nosi, U.; Wong, F.; Kingdom, J. Placental transcriptome in development and pathology: Expression, function, and methods of analysis. Am. J. Obstet. Gynecol. 2015, 213 (Suppl. 4), S138–S151. [Google Scholar] [CrossRef] [PubMed]
- Rahnavard, A.; Chatterjee, R.; Wen, H.; Gaylord, C.; Mugusi, S.; Klatt, K.C.; Smith, E.R. Molecular epidemiology of pregnancy using omics data: Advances, success stories, and challenges. J. Transl. Med. 2024, 22, 106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gál, L.; Fóthi, Á.; Orosz, G.; Nagy, S.; Than, N.G.; Orbán, T.I. Exosomal small RNA profiling in first-trimester maternal blood explores early molecular pathways of preterm preeclampsia. Front. Immunol. 2024, 15, 1321191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stevens, A.; Khashkhusha, T.; Sharps, M.; Garner, T.; Ruane, P.T.; Aplin, J.D. The Human Early Maternal–Embryonic Interactome. Reprod. Med. 2023, 4, 40–56. [Google Scholar] [CrossRef]
- Jackson, M.R.; Mayhew, T.M.; Boyd, P.A. Quantitative description of the elaboration and maturation of villi from 10 weeks of gestation to term. Placenta 1992, 13, 357–370. [Google Scholar] [CrossRef]
- Mitchell, B.; Sharma, R. How does an embryo form? In Embryology: An Illustrated Colour Text; Mitchell, B., Sharma, R., Eds.; Elsevier/Churchill Livingstone: Amsterdam, The Netherlands, 2005; pp. 9–14. ISBN 0443073988. [Google Scholar]
- Harrison, R.G. The development of the placenta. In RG Harrison: A Textbook of Human Embryology, 2nd ed.; Blackwell Scientific Publications Ltd.: Oxford, UK, 1963; pp. 60–67. [Google Scholar]
- Sadler, T.W. Bilaminar Germ Disc (Second Week of Development). In Langman’s Medical Embryology, 15th ed.; Sadler, T.W., Ed.; Lippincott Williams & Wilkins a Wolters Kluwer Business: Alphen aan den Rijn, The Netherlands, 2023; pp. 51–59. Available online: https://integratedsciences.lwwhealthlibrary.com/book.aspx?bookid=3221§ionid= (accessed on 29 December 2024).
- Burton, G.J.; Jauniaux, E. The human placenta: New perspectives on its formation and function during early pregnancy. Proc. Biol. Sci. 2023, 290, 20230191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herrick, E.J.; Bordoni, B. Embryology, Placenta. [Updated 2023 May 1]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551634/ (accessed on 29 December 2024).
- Ruane, P.T.; Garner, T.; Parsons, L.; Babbington, P.A.; Wangsaputra, I.; Kimber, S.J.; Stevens, A.; Westwood, M.; Brison, D.R.; Aplin, J.D. Trophectoderm differentiation to invasive syncytiotrophoblast is promoted by endometrial epithelial cells during human embryo implantation. Hum. Reprod. 2022, 37, 777–792. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sathasivam, R.; Selliah, P.; Sivalingarajah, R.; Mayorathan, U.; Munasinghe, B.M. Placental weight and its relationship with the birth weight of term infants and body mass index of the mothers. J. Int. Med. Res. 2023, 51, 3000605231172895. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- King, B.F. The organization of actin filaments in the brush border of yolk sac epithelial cells. J. Ultrastruct. Res. 1983, 85, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Ockleford, C.D.; Wakely, J.; Badley, R.A. Morphogenesis of human placental chorionic villi: Cytoskeletal, syncytioskeletal and extracellular matrix proteins. Proc. R. Soc. Lond. B Biol. Sci. 1981, 212, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Vanderpuye, O.A.; Edwards, H.C.; Booth, A.G. Proteins of the human placental microvillar cytoskeleton. Alpha-Actinin. Biochem. J. 1986, 233, 351–356. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Viswanatha, R.; Bretscher, A.; Garbett, D. Dynamics of ezrin and EBP50 in regulating microvilli on the apical aspect of epithelial cells. Biochem. Soc. Trans. 2014, 42, 189–194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walker, V. The Intricacies of Renal Phosphate Reabsorption—An Overview. Int. J. Mol. Sci. 2024, 25, 4684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berryman, M.; Gary, R.; Bretscher, A. Ezrin oligomers are major cytoskeletal components of placental microvilli: A proposal for their involvement in cortical morphogenesis. J. Cell Biol. 1995, 131, 1231–1242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonilha, V.L.; Finnemann, S.C.; Rodriguez-Boulan, E. Ezrin promotes morphogenesis of apical microvilli and basal infoldings in retinal pigment epithelium. J. Cell Biol. 1999, 147, 1533–1548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reczek, D.; Bretscher, A. The carboxyl-terminal region of EBP50 binds to a site in the amino-terminal domain of ezrin that is masked in the dormant molecule. J. Biol. Chem. 1998, 273, 18452–18458. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Nance, M.R.; Kulikauskas, R.; Nyberg, K.; Fehon, R.; Karplus, P.A.; Bretscher, A.; Tesmer, J.J. Self-masking in an intact ERM-merlin protein: An active role for the central alpha-helical domain. J. Mol. Biol. 2007, 365, 1446–1459. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Turunen, O.; Wahlström, T.; Vaheri, A. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J. Cell Biol. 1994, 126, 1445–1453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reczek, D.; Berryman, M.; Bretscher, A. Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J. Cell Biol. 1997, 139, 169–179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berryman, M.; Franck, Z.; Bretscher, A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci. 1993, 105 Pt 4, 1025–1043. [Google Scholar] [CrossRef] [PubMed]
- Saotome, I.; Curto, M.; McClatchey, A.I. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev. Cell. 2004, 6, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.C.; Takahashi, Y.; Kreimann, E.L.; Georgescu, M.M. Ezrin-radixin-moesin (ERM)-binding phosphoprotein 50 organizes ERM proteins at the apical membrane of polarized epithelia. Proc. Natl. Acad. Sci. USA 2004, 101, 17705–17710. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weinman, E.J.; Shenolikar, S. The Na-H exchanger regulatory factor. Exp. Nephrol. 1997, 5, 449–452. [Google Scholar] [PubMed]
- Yun, C.H.; Oh, S.; Zizak, M.; Steplock, D.; Tsao, S.; Tse, C.M.; Weinman, E.J.; Donowitz, M. cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc. Natl. Acad. Sci. USA 1997, 94, 3010–3015. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, K.; Paredes, J.M.; Mamonova, T.; Sneddon, W.B.; Liu, H.; Wang, D.; Li, S.; McGarvey, J.C.; Uehling, D.; et al. Parathyroid hormone initiates dynamic NHERF1 phosphorylation cycling and conformational changes that regulate NPT2A-dependent phosphate transport. J. Biol. Chem. 2019, 294, 4546–4571. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhattacharya, S.; Stanley, C.B.; Heller, W.T.; Friedman, P.A.; Bu, Z. Dynamic structure of the full-length scaffolding protein NHERF1 influences signaling complex assembly. J. Biol. Chem. 2019, 294, 11297–11310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernando, N.; Wagner, C.A.; Gisler, S.M.; Biber, J.; Murer, H. PDZ proteins and proximal ion transport. Curr. Opin. Nephrol. Hypertens. 2004, 13, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Murer, H. Functional domains in the renal type IIa Na/P(i)-cotransporter. Kidney Int. 2002, 62, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Shenolikar, S.; Voltz, J.W.; Cunningham, R.; Weinman, E.J. Regulation of ion transport by the NHERF family of PDZ proteins. Physiology 2004, 19, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Bootman, M.D.; Bultynck, G. Fundamentals of Cellular Calcium Signaling: A Primer. Cold Spring Harb. Perspect. Biol. 2020, 12, a038802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vangeel, L.; Voets, T. Transient Receptor Potential Channels and Calcium Signaling. Cold Spring Harb. Perspect. Biol. 2019, 11, a035048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prakriya, M.; Lewis, R.S. Store-Operated Calcium Channels. Physiol. Rev. 2015, 95, 1383–1436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bill, C.A.; Vines, C.M. Phospholipase C. Adv. Exp. Med. Biol. 2020, 1131, 215–242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rhee, S.G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 2001, 70, 281–312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kouchi, Z.; Shikano, T.; Nakamura, Y.; Shirakawa, H.; Fukami, K.; Miyazaki, S. The role of EF-hand domains and C2 domain in regulation of enzymatic activity of phospholipase Czeta. J. Biol. Chem. 2005, 280, 21015–21021. [Google Scholar] [CrossRef] [PubMed]
- Wakai, T.; Mehregan, A.; Fissore, R.A. Ca2+ Signaling and Homeostasis in Mammalian Oocytes and Eggs. Cold Spring Harb. Perspect. Biol. 2019, 11, a035162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grasa, P.; Coward, K.; Young, C.; Parrington, J. The pattern of localization of the putative oocyte activation factor, phospholipase Czeta, in uncapacitated, capacitated, and ionophore-treated human spermatozoa. Hum. Reprod. 2008, 23, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Heytens, E.; Parrington, J.; Coward, K.; Young, C.; Lambrecht, S.; Yoon, S.Y.; Fissore, R.A.; Hamer, R.; Deane, C.M.; Ruas, M.; et al. Reduced amounts and abnormal forms of phospholipase C zeta (PLCzeta) in spermatozoa from infertile men. Hum. Reprod. 2009, 24, 2417–2428. [Google Scholar] [CrossRef] [PubMed]
- Kashir, J.; Jones, C.; Mounce, G.; Ramadan, W.M.; Lemmon, B.; Heindryckx, B.; de Sutter, P.; Parrington, J.; Turner, K.; Child, T.; et al. Variance in total levels of phospholipase C zeta (PLC-ζ) in human sperm may limit the applicability of quantitative immunofluorescent analysis as a diagnostic indicator of oocyte activation capability. Fertil. Steril. 2013, 99, 107–117.e3. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.Y.; Jellerette, T.; Salicioni, A.M.; Lee, H.C.; Yoo, M.S.; Coward, K.; Parrington, J.; Grow, D.; Cibelli, J.B.; Visconti, P.E.; et al. Human sperm devoid of PLC, zeta 1 fail to induce Ca(2+) release and are unable to initiate the first step of embryo development. J. Clin. Investig. 2008, 118, 3671–3681. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rogers, N.T.; Halet, G.; Piao, Y.; Carroll, J.; Ko, M.S.; Swann, K. The absence of a Ca(2+) signal during mouse egg activation can affect parthenogenetic preimplantation development, gene expression patterns, and blastocyst quality. Reproduction 2006, 132, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Shafqat, A.; Kashir, J.; Alsalameh, S.; Alkattan, K.; Yaqinuddin, A. Fertilization, Oocyte Activation, Calcium Release and Epigenetic Remodelling: Lessons from Cancer Models. Front. Cell Dev. Biol. 2022, 10, 781953. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (transient receptor potential) ion channel family: Structures, biological functions and therapeutic interventions for diseases. Signal Transduct. Target. Ther. 2023, 8, 261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Earley, S.; Brayden, J.E. Transient receptor potential channels in the vasculature. Physiol. Rev. 2015, 95, 645–690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, J.-B.; Suzuki, Y.; Gyimesi, G.; Hediger, M.A. TRPV5 and TRPV6 calcium selective channels. In Calcium Entry Channels in Non-Excitable Cells; Kozak, J.A., Putney, J.W., Jr., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2018; pp. 242–274. [Google Scholar] [CrossRef]
- Chen, X.; Sooch, G.; Demaree, I.S.; White, F.A.; Obukhov, A.G. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells. 2020, 9, 1983. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.; Mu, J.; Zhu, M.; Mukherjee, A.; Zhang, H. Transient Receptor Potential Channels and Inflammatory Bowel Disease. Front. Immunol. 2020, 11, 180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clapham, D.E.; Julius, D.; Montell, C.; Schultz, G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol. Rev. 2005, 57, 427–450. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, E.; Dietrich, A.; Birnbaumer, L. The mouse C-type transient receptor potential 2 (TRPC2) channel: Alternative splicing and calmodulin binding to its N terminus. Proc. Natl. Acad. Sci. USA 2003, 100, 2220–2225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Venkatachalam, K.; Montell, C. TRP channels. Annu. Rev. Biochem. 2007, 76, 387–417. [Google Scholar] [CrossRef] [PubMed]
- Seebohm, G.; Schreiber, J.A. Beyond hot and spicy: TRPV channels and their pharmacological modulation. Cell Physiol. Biochem. 2021, 55, 108–130. [Google Scholar] [CrossRef] [PubMed]
- Tomohiro, D.; Mizuta, K.; Fujita, T.; Nishikubo, Y.; Kumamoto, E. Inhibition by capsaicin and its related vanilloids of compound action potentials in frog sciatic nerves. Life Sci. 2013, 92, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Peng, J.B.; Hediger, M.A.; Clapham, D.E. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 2001, 410, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xue, L.; Song, C. Calcium binding and permeation in TRPV channels: Insights from molecular dynamics simulations. J. Gen. Physiol. 2023, 155, e202213261. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, K.; Vriens, J. Establishing life is a calcium-dependent TRiP: Transient receptor potential channels in reproduction. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865 Pt B, 1815–1829. [Google Scholar] [CrossRef]
- Flockerzi, V.; Nilius, B. TRPs: Truly remarkable proteins. Handb. Exp. Pharmacol. 2014, 222, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chubanov, V.; Köttgen, M.; Touyz, R.M.; Gudermann, T. TRPM channels in health and disease. Nat. Rev. Nephrol. 2024, 20, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.G.; Rios, F.J.; Montezano, A.C.; Touyz, R.M. TRPM7, magnesium, and signaling. Int. J. Mol. Sci. 2019, 20, 1877. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moreau, R.; Hamel, A.; Daoud, G.; Simoneau, L.; Lafond, J. Expression of calcium channels along the differentiation of cultured trophoblast cells from human term placenta. Biol. Reprod. 2002, 67, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Hoefs, S.; van der Kemp, A.W.; Topala, C.N.; Bindels, R.J.; Hoenderop, J.G. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 2005, 310, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Boros, S.; Chang, Q.; Bindels, R.J.; Hoenderop, J.G. The beta-glucuronidase klotho exclusively activates the epithelial Ca2+ channels TRPV5 and TRPV6. Nephrol. Dial. Transplant. 2008, 23, 3397–3402. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.B.; Brown, E.M.; Hediger, M.A. Structural conservation of the genes encoding CaT1, CaT2, and related cation channels. Genomics 2001, 76, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Ashley, B.; Simner, C.; Manousopoulou, A.; Jenkinson, C.; Hey, F.; Frost, J.M.; Rezwan, F.I.; White, C.H.; Lofthouse, E.M.; Hyde, E.; et al. Placental uptake and metabolism of 25(OH)vitamin D determine its activity within the fetoplacental unit. eLife 2022, 11, e71094. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wissenbach, U.; Niemeyer, B.A.; Fixemer, T.; Schneidewind, A.; Trost, C.; Cavalie, A.; Reus, K.; Meese, E.; Bonkhoff, H.; Flockerzi, V. Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J. Biol. Chem. 2001, 276, 19461–19468. [Google Scholar] [CrossRef] [PubMed]
- Fecher-Trost, C.; Lux, F.; Busch, K.M.; Raza, A.; Winter, M.; Hielscher, F.; Belkacemi, T.; van der Eerden, B.; Boehm, U.; Freichel, M.; et al. Maternal Transient Receptor Potential Vanilloid 6 (Trpv6) Is Involved in Offspring Bone Development. J. Bone Miner. Res. 2019, 34, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Sun, C.; Zheng, J. Heteromerization of TRP channel subunits: Extending functional diversity. Protein Cell. 2010, 1, 802–810. [Google Scholar] [CrossRef]
- Hellmich, U.A.; Gaudet, R. Structural biology of TRP channels. Handb. Exp. Pharmacol. 2014, 223, 963–990. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rohács, T.; Lopes, C.; Michailidis, I.; Logothetis, D.E. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci. 2005, 8, 626–634. [Google Scholar] [CrossRef]
- García-Sanz, N.; Fernández-Carvajal, A.; Morenilla-Palao, C.; Planells-Cases, R.; Fajardo-Sánchez, E.; Fernández-Ballester, G.; Ferrer-Montiel, A. Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J. Neurosci. 2004, 24, 5307–5314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hofmann, T.; Obukhov, A.G.; Schaefer, M.; Harteneck, C.; Gudermann, T.; Schultz, G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 1999, 397, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Froghi, S.; Grant, C.R.; Tandon, R.; Quaglia, A.; Davidson, B.; Fuller, B. New Insights on the Role of TRP Channels in Calcium Signalling and Immunomodulation: Review of Pathways and Implications for Clinical Practice. Clin. Rev. Allergy Immunol. 2021, 60, 271–292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khalil, M.; Alliger, K.; Weidinger, C.; Yerinde, C.; Wirtz, S.; Becker, C.; Engel, M.A. Functional Role of Transient Receptor Potential Channels in Immune Cells and Epithelia. Front. Immunol. 2018, 9, 174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhuang, L.; Peng, J.B.; Tou, L.; Takanaga, H.; Adam, R.; Hediger, M.; Freeman, M. Calcium-Selective Ion Channel, CaT1, Is Apically Localized in Gastrointestinal Tract Epithelia and Is Aberrantly Expressed in Human Malignancies. Lab. Investig. 2002, 82, 1755–1764. [Google Scholar] [CrossRef]
- Fecher-Trost, C.; Wissenbach, U.; Weissgerber, P. TRPV6: From identification to function. Cell Calcium. 2017, 67, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Hoenderop, J.G.; van der Kemp, A.W.; Hartog, A.; van de Graaf, S.F.; van Os, C.H.; Willems, P.H.; Bindels, R.J. Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J. Biol. Chem. 1999, 274, 8375–8378. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.B.; Chen, X.Z.; Berger, U.V.; Vassilev, P.M.; Brown, E.M.; Hediger, M.A. A rat kidney-specific calcium transporter in the distal nephron. J. Biol. Chem. 2000, 275, 28186–28194. [Google Scholar] [CrossRef] [PubMed]
- Hoenderop, J.G.; Nilius, B.; Bindels, R.J. Calcium absorption across epithelia. Physiol. Rev. 2005, 85, 373–422. [Google Scholar] [CrossRef] [PubMed]
- Walker, V.; Vuister, G.W. Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Adv. Clin. Chem. 2023, 113, 43–100. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Riley, E.M.; Meyer, M.B.; Benkusky, N.A.; Plum, L.A.; DeLuca, H.F.; Pike, J.W. 1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components. J. Biol. Chem. 2015, 290, 18199–18215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pomerantz, M.M.; Li, F.; Takeda, D.Y.; Lenci, R.; Chonkar, A.; Chabot, M.; Cejas, P.; Vazquez, F.; Cook, J.; Shivdasani, R.A.; et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat. Genet. 2015, 47, 1346–1351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fecher-Trost, C.; Wissenbach, U.; Beck, A.; Schalkowsky, P.; Stoerger, C.; Doerr, J.; Dembek, A.; Simon-Thomas, M.; Weber, A.; Wollenberg, P.; et al. The in vivo TRPV6 protein starts at a non-AUG triplet, decoded as methionine, upstream of canonical initiation at AUG. J. Biol. Chem. 2013, 288, 16629–16644. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moreau, R.; Daoud, G.; Bernatchez, R.; Simoneau, L.; Masse, A.; Lafond, J. Calcium uptake and calcium transporter expression by trophoblast cells from human term placenta. Biochim. Biophys. Acta 2002, 1564, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Bernucci, L.; Henríquez, M.; Díaz, P.; Riquelme, G. Diverse calcium channel types are present in the human placental syncytiotrophoblast basal membrane. Placenta 2006, 27, 1082–1095. [Google Scholar] [CrossRef] [PubMed]
- Khattar, V.; Wang, L.; Peng, J.B. Calcium selective channel TRPV6: Structure, function, and implications in health and disease. Gene 2022, 817, 146192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suzuki, Y.; Kovacs, C.S.; Takanaga, H.; Peng, J.B.; Landowski, C.P.; Hediger, M.A. Calcium channel TRPV6 is involved in murine maternal-fetal calcium transport. J. Bone Miner. Res. 2008, 23, 1249–1256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.H.; Yin, H.B.; Ren, M.R.; Wu, M.J.; Huang, X.L.; Li, J.J.; Luan, Y.P.; Wu, Y.L. TRPV5 and TRPV6 are expressed in placenta and bone tissues during pregnancy in mice. Biotech. Histochem. 2019, 94, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.M.; Lee, G.S.; Jung, E.M.; Choi, K.C.; Jeung, E.B. Uterine and placental expression of TRPV6 gene is regulated via progesterone receptor- or estrogen receptor-mediated pathways during pregnancy in rodents. Reprod. Biol. Endocrinol. 2009, 7, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, H.; An, B.S.; Choi, K.C.; Jeung, E.B. Change of genes in calcium transport channels caused by hypoxic stress in the placenta, duodenum, and kidney of pregnant rats. Biol. Reprod. 2013, 88, 30. [Google Scholar] [CrossRef] [PubMed]
- Sprekeler, N.; Kowalewski, M.P.; Boos, A. TRPV6 and Calbindin-D9k-expression and localization in the bovine uterus and placenta during pregnancy. Reprod. Biol. Endocrinol. 2012, 10, 66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kogel, A.; Fecher-Trost, C.; Wissenbach, U.; Flockerzi, V.; Schaefer, M. Ca2+ transport via TRPV6 is regulated by rapid internalization of the channel. Cell Calcium 2022, 106, 102634. [Google Scholar] [CrossRef] [PubMed]
- Trofimov, Y.A.; Krylov, N.A.; Minakov, A.S.; Nadezhdin, K.D.; Neuberger, A.; Sobolevsky, A.I.; Efremov, R.G. Dynamic molecular portraits of ion-conducting pores characterize functional states of TRPV channels. Commun. Chem. 2024, 7, 119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xin, Y.; Malick, A.; Hu, M.; Liu, C.; Batah, H.; Xu, H.; Duan, C. Cell-autonomous regulation of epithelial cell quiescence by calcium channel Trpv6. eLife 2019, 8, e48003. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, J.B.; Chen, X.Z.; Berger, U.V.; Weremowicz, S.; Morton, C.C.; Vassilev, P.M.; Brown, E.M.; Hediger, M.A. Human calcium transport protein CaT1. Biochem. Biophys. Res. Commun. 2000, 278, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Lindinger, S.; Neuberger, A.; Nadezhdin, K.D.; Singh, A.K.; Cunha, M.R.; Derler, I.; Gyimesi, G.; Reymond, J.L.; Hediger, M.A.; et al. Inactivation-mimicking block of the epithelial calcium channel TRPV6. Sci. Adv. 2020, 6, eabe1508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yelshanskaya, M.V.; Nadezhdin, K.D.; Kurnikova, M.G.; Sobolevsky, A.I. Structure and function of the calcium-selective TRP channel TRPV6. J. Physiol. 2021, 599, 2673–2697. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McGoldrick, L.L.; Singh, A.K.; Saotome, K.; Yelshanskaya, M.V.; Twomey, E.C.; Grassucci, R.A.; Sobolevsky, A.I. Opening of the human epithelial calcium channel TRPV6. Nature 2018, 553, 233–237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, A.K.; McGoldrick, L.L.; Twomey, E.C.; Sobolevsky, A.I. Mechanism of calmodulin inactivation of the calcium-selective TRP channel TRPV6. Sci. Adv. 2018, 4, eaau6088. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nilius, B.; Prenen, J.; Hoenderop, J.G.; Vennekens, R.; Hoefs, S.; Weidema, A.F.; Droogmans, G.; Bindels, R.J. Fast and slow inactivation kinetics of the Ca2+ channels ECaC1 and ECaC2 (TRPV5 and TRPV6). Role of the intracellular loop located between tranmembrane segments 2 and 3. J. Biol. Chem. 2002, 277, 30852–30858. [Google Scholar] [CrossRef] [PubMed]
- Flores-Aldama, L.; Vandewege, M.W.; Zavala, K.; Colenso, C.K.; Gonzalez, W.; Brauchi, S.E.; Opazo, J.C. Evolutionary analyses reveal independent origins of gene repertoires and structural motifs associated to fast inactivation in calcium-selective TRPV channels. Sci. Rep. 2020, 10, 8684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Linse, S.; Helmersson, A.; Forsén, S. Calcium binding to calmodulin and its globular domains. J. Biol. Chem. 1991, 266, 8050–8054. [Google Scholar] [CrossRef] [PubMed]
- Pumroy, R.A.; Fluck, E.C., 3rd; Ahmed, T.; Moiseenkova-Bell, V.Y. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium 2020, 87, 102168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andrews, C.; Xu, Y.; Kirberger, M.; Yang, J.J. Structural Aspects and Prediction of Calmodulin-Binding Proteins. Int. J. Mol. Sci. 2020, 22, 308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kovalevskaya, N.V.; van de Waterbeemd, M.; Bokhovchuk, F.M.; Bate, N.; Bindels, R.J.; Hoenderop, J.G.; Vuister, G.W. Structural analysis of calmodulin binding to ion channels demonstrates the role of its plasticity in regulation. Pflugers Arch. 2013, 465, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Jang, H.; Gaponenko, V.; Nussinov, R. Phosphorylated Calmodulin Promotes PI3K Activation by Binding to the SH2 Domains. Biophys. J. 2017, 113, 1956–1967. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van de Graaf, S.F.; Hoenderop, J.G.; Bindels, R.J. Regulation of TRPV5 and TRPV6 by associated proteins. Am. J. Physiol. Renal Physiol. 2006, 290, F1295–F1302. [Google Scholar] [CrossRef] [PubMed]
- de Groot, T.; Kovalevskaya, N.V.; Verkaart, S.; Schilderink, N.; Felici, M.; van der Hagen, E.A.; Bindels, R.J.; Vuister, G.W.; Hoenderop, J.G. Molecular mechanisms of calmodulin action on TRPV5 and modulation by parathyroid hormone. Mol. Cell Biol. 2011, 31, 2845–2853. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bokhovchuk, F.M.; Bate, N.; Kovalevskaya, N.V.; Goult, B.T.; Spronk, C.A.E.M.; Vuister, G.W. The Structural Basis of Calcium-Dependent Inactivation of the Transient Receptor Potential Vanilloid 5 Channel. Biochemistry 2018, 57, 2623–2635. [Google Scholar] [CrossRef] [PubMed]
- Bate, N.; Caves, R.E.; Skinner, S.P.; Goult, B.T.; Basran, J.; Mitcheson, J.S.; Vuister, G.W. A Novel Mechanism for Calmodulin-Dependent Inactivation of Transient Receptor Potential Vanilloid 6. Biochemistry 2018, 57, 2611–2622. [Google Scholar] [CrossRef] [PubMed]
- van de Graaf, S.F.; Hoenderop, J.G.; Gkika, D.; Lamers, D.; Prenen, J.; Rescher, U.; Gerke, V.; Staub, O.; Nilius, B.; Bindels, R.J. Functional expression of the epithelial Ca(2+) channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J. 2003, 22, 1478–1487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, H.J.; Yang, D.K.; So, I. PDZ domain-containing protein as a physiological modulator of TRPV6. Biochem. Biophys. Res. Commun. 2007, 361, 433–438. [Google Scholar] [CrossRef] [PubMed]
- van de Graaf, S.F.; Chang, Q.; Mensenkamp, A.R.; Hoenderop, J.G.; Bindels, R.J. Direct interaction with Rab11a targets the epithelial Ca2+ channels TRPV5 and TRPV6 to the plasma membrane. Mol. Cell Biol. 2006, 26, 303–312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gkika, D.; Lemonnier, L.; Shapovalov, G.; Gordienko, D.; Poux, C.; Bernardini, M.; Bokhobza, A.; Bidaux, G.; Degerny, C.; Verreman, K.; et al. TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity. J. Cell Biol. 2015, 208, 89–107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stumpf, T.; Zhang, Q.; Hirnet, D.; Lewandrowski, U.; Sickmann, A.; Wissenbach, U.; Dörr, J.; Lohr, C.; Deitmer, J.W.; Fecher-Trost, C. The human TRPV6 channel protein is associated with cyclophilin B in human placenta. J. Biol. Chem. 2008, 283, 18086–18098. [Google Scholar] [CrossRef] [PubMed]
- Fecher-Trost, C.; Weissgerber, P.; Wissenbach, U. TRPV6 channels. Handb. Exp. Pharmacol. 2014, 222, 359–384. [Google Scholar] [CrossRef] [PubMed]
- Raphaël, M.; Lehen’kyi, V.; Vandenberghe, M.; Beck, B.; Khalimonchyk, S.; Vanden Abeele, F.; Farsetti, L.; Germain, E.; Bokhobza, A.; Mihalache, A.; et al. TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proc. Natl. Acad. Sci. USA 2014, 111, E3870–E3879. [Google Scholar] [CrossRef]
- Schindl, R.; Fritsch, R.; Jardin, I.; Frischauf, I.; Kahr, H.; Muik, M.; Riedl, M.C.; Groschner, K.; Romanin, C. Canonical transient receptor potential (TRPC) 1 acts as a negative regulator for vanilloid TRPV6-mediated Ca2+ influx. J. Biol. Chem. 2012, 287, 35612–35620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 2009, 10, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Burren, C.P.; Caswell, R.; Castle, B.; Welch, C.R.; Hilliard, T.N.; Smithson, S.F.; Ellard, S. TRPV6 compound heterozygous variants result in impaired placental calcium transport and severe undermineralization and dysplasia of the fetal skeleton. Am. J. Med. Genet. A 2018, 176, 1950–1955. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suzuki, Y.; Chitayat, D.; Sawada, H.; Deardorff, M.A.; McLaughlin, H.M.; Begtrup, A.; Millar, K.; Harrington, J.; Chong, K.; Roifman, M.; et al. TRPV6 Variants Interfere with Maternal-Fetal Calcium Transport through the Placenta and Cause Transient Neonatal Hyperparathyroidism. Am. J. Hum. Genet. 2018, 102, 1104–1114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamashita, S.; Mizumoto, H.; Sawada, H.; Suzuki, Y.; Hata, D. TRPV6 Gene Mutation in a Dizygous Twin with TransientNeonatal Hyperparathyroidism. J. Endocr. Soc. 2019, 3, 602–606. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suzuki, Y.; Sawada, H.; Tokumasu, T.; Suzuki, S.; Ninomiya, S.; Shirai, M.; Mukai, T.; Saito, C.T.; Nishimura, G.; Tominaga, M. Novel TRPV6 mutations in the spectrum of transient neonatal hyperparathyroidism. J. Physiol. Sci. 2020, 70, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Almidani, E.; Elsidawi, W.; Almohamedi, A.; Bin Ahmed, I.; Alfadhel, A. Case Report of Transient Neonatal Hyperparathyroidism: Medically Free Mother. Cureus 2020, 12, e7000. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mason, A.E.; Grier, D.; Smithson, S.F.; Burren, C.P.; Gradhand, E. Post-mortem histology in transient receptor potential cation channel subfamily V member 6 (TRPV6) under-mineralising skeletal dysplasia suggests postnatal skeletal recovery: A case report. BMC Med. Genet. 2020, 21, 64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ohta, H.; Uenishi, K.; Shiraki, M. Recent nutritional trends of calcium and vitamin D in East Asia. Osteoporos. Sarcopenia 2016, 2, 208–213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shlisky, J.; Mandlik, R.; Askari, S.; Abrams, S.; Belizan, J.M.; Bourassa, M.W.; Cormick, G.; Driller-Colangelo, A.; Gomes, F.; Khadilkar, A.; et al. Calcium deficiency worldwide: Prevalence of inadequate intakes and associated health outcomes. Ann. N. Y. Acad. Sci. 2022, 1512, 10–28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fecher-Trost, C.; Wolske, K.; Wesely, C.; Löhr, H.; Klawitter, D.S.; Weissgerber, P.; Gradhand, E.; Burren, C.P.; Mason, A.E.; Winter, M.; et al. Mutations That Affect the Surface Expression of TRPV6 Are Associated with the Upregulation of Serine Proteases in the Placenta of an Infant. Int. J. Mol. Sci. 2021, 22, 12694. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Winter, M.; Weissgerber, P.; Klein, K.; Lux, F.; Yildiz, D.; Wissenbach, U.; Philipp, S.E.; Meyer, M.R.; Flockerzi, V.; Fecher-Trost, C. Transient Receptor Potential Vanilloid 6 (TRPV6) Proteins Control the Extracellular Matrix Structure of the Placental Labyrinth. Int. J. Mol. Sci. 2020, 21, 9674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vanoevelen, J.; Janssens, A.; Huitema, L.F.; Hammond, C.L.; Metz, J.R.; Flik, G.; Voets, T.; Schulte-Merker, S. Trpv5/6 is vital for epithelial calcium uptake and bone formation. FASEB J. 2011, 25, 3197–3207. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.C.; Liao, B.K.; Huang, C.J.; Lin, L.Y.; Hwang, P.P. Epithelial Ca (2+) channel expression and Ca (2+) uptake in developing zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R1202–R1211. [Google Scholar] [CrossRef] [PubMed]
- Okura, G.C.; Bharadwaj, A.G.; Waisman, D.M. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023, 13, 1450. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerke, V.; Gavins, F.N.E.; Geisow, M.; Grewal, T.; Jaiswal, J.K.; Nylandsted, J.; Rescher, U. Annexins-a family of proteins with distinctive tastes for cell signaling and membrane dynamics. Nat. Commun. 2024, 15, 1574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abd El-Aleem, S.A.; Dekker, L.V. Assessment of the cellular localisation of the annexin A2/S100A10 complex in human placenta. J. Mol. Histol. 2018, 49, 531–543. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaczan-Bourgois, D.; Salles, J.P.; Hullin, F.; Fauvel, J.; Moisand, A.; Duga-Neulat, I.; Berrebi, A.; Campistron, G.; Chap, H. Increased content of annexin II (p36) and p11 in human placenta brush-border membrane vesicles during syncytiotrophoblast maturation and differentiation. Placenta 1996, 17, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Huber, R.; Schneider, M.; Mayr, I.; Römisch, J.; Paques, E.P. The calcium binding sites in human annexin V by crystal structure analysis at 2.0 A resolution. Implications for membrane binding and calcium channel activity. FEBS Lett. 1990, 275, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Drücker, P.; Pejic, M.; Grill, D.; Galla, H.J.; Gerke, V. Cooperative binding of annexin A2 to cholesterol- and phosphatidylinositol-4,5-bisphosphate-containing bilayers. Biophys. J. 2014, 107, 2070–2081. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerke, V.; Creutz, C.E.; Moss, S.E. Annexins: Linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol. 2005, 6, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Myrvang, H.K.; Dekker, L.V. Annexin A2 complexes with S100 proteins: Structure, function and pharmacological manipulation. Br. J. Pharmacol. 2015, 172, 1664–1676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loffing, J.; Loffing-Cueni, D.; Valderrabano, V.; Kläusli, L.; Hebert, S.C.; Rossier, B.C.; Hoenderop, J.G.; Bindels, R.J.; Kaissling, B. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am. J. Physiol. Renal Physiol. 2001, 281, F1021–F1027. [Google Scholar] [CrossRef] [PubMed]
- Putney, J.W., Jr. A model for receptor-regulated calcium entry. Cell Calcium. 1986, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Putney, J.W.; Steinckwich-Besançon, N.; Numaga-Tomita, T.; Davis, F.M.; Desai, P.N.; D’Agostin, D.M.; Wu, S.; Bird, G.S. The functions of store-operated calcium channels. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 900–906. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clarson, L.H.; Roberts, V.H.; Hamark, B.; Elliott, A.C.; Powell, T. Store-operated Ca2+ entry in first trimester and term human placenta. J. Physiol. 2003, 550 Pt 2, 515–528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vig, M.; Peinelt, C.; Beck, A.; Koomoa, D.L.; Rabah, D.; Koblan-Huberson, M.; Kraft, S.; Turner, H.; Fleig, A.; Penner, R.; et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006, 312, 1220–1223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, S.L.; Yeromin, A.V.; Zhang, X.H.; Yu, Y.; Safrina, O.; Penna, A.; Roos, J.; Stauderman, K.A.; Cahalan, M.D. Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca (2+) release-activated Ca (2+) channel activity. Proc. Natl. Acad. Sci. USA 2006, 103, 9357–9362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feske, S.; Müller, J.M.; Graf, D.; Kroczek, R.A.; Dräger, R.; Niemeyer, C.; Baeuerle, P.A.; Peter, H.H.; Schlesier, M. Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur. J. Immunol. 1996, 26, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Feske, S.; Gwack, Y.; Prakriya, M.; Srikanth, S.; Puppel, S.H.; Tanasa, B.; Hogan, P.G.; Lewis, R.S.; Daly, M.; Rao, A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006, 441, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Picard, C.; McCarl, C.A.; Papolos, A.; Khalil, S.; Lüthy, K.; Hivroz, C.; LeDeist, F.; Rieux-Laucat, F.; Rechavi, G.; Rao, A.; et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 2009, 360, 1971–1980. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rubaiy, H.N. ORAI Calcium Channels: Regulation, Function, Pharmacology, and Therapeutic Targets. Pharmaceuticals 2023, 16, 162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, K.T.; Liu, X.; Ong, H.L.; Swaim, W.; Ambudkar, I.S. Local Ca2+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca2+ signals required for specific cell functions. PLoS Biol. 2011, 9, e1001025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmad, M.; Narayanasamy, S.; Ong, H.L.; Ambudkar, I. STIM Proteins and Regulation of SOCE in ER-PM Junctions. Biomolecules 2022, 12, 1152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ambudkar, I.S.; de Souza, L.B.; Ong, H.L. TRPC1, Orai1, and STIM1 in SOCE: Friends in tight spaces. Cell Calcium 2017, 63, 33–39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez, J.J.; Jardin, I.; Sanchez-Collado, J.; Salido, G.M.; Smani, T.; Rosado, J.A. TRPC Channels in the SOCE Scenario. Cells 2020, 9, 126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lewis, R.S. Store-Operated Calcium Channels: From Function to Structure and Back Again. Cold Spring Harb. Perspect. Biol. 2020, 12, a035055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prakriya, M.; Lewis, R.S. Regulation of CRAC channel activity by recruitment of silent channels to a high open-probability gating mode. J. Gen. Physiol. 2006, 128, 373–386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sallinger, M.; Grabmayr, H.; Humer, C.; Bonhenry, D.; Romanin, C.; Schindl, R.; Derler, I. Activation mechanisms and structural dynamics of STIM proteins. J. Physiol. 2024, 602, 1475–1507. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Choi, S.; Maléth, J.J.; Park, S.; Ahuja, M.; Muallem, S. The ER/PM microdomain, PI(4,5)P₂ and the regulation of STIM1-Orai1 channel function. Cell Calcium 2015, 58, 342–348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hogan, P.G. The STIM1-ORAI1 microdomain. Cell Calcium 2015, 58, 357–367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maltan, L.; Andova, A.M.; Derler, I. The Role of Lipids in CRAC Channel Function. Biomolecules 2022, 12, 352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ong, H.L.; de Souza, L.B.; Zheng, C.; Cheng, K.T.; Liu, X.; Goldsmith, C.M.; Feske, S.; Ambudkar, I.S. STIM2 enhances receptor-stimulated Ca²⁺ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum-plasma membrane junctions. Sci. Signal. 2015, 8, ra3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soboloff, J.; Rothberg, B.S.; Madesh, M.; Gill, D.L. STIM proteins: Dynamic calcium signal transducers. Nat. Rev. Mol. Cell Biol. 2012, 13, 549–565. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stathopulos, P.B.; Ikura, M. Structure and function of endoplasmic reticulum STIM calcium sensors. Curr. Top. Membr. 2013, 71, 59–93. [Google Scholar] [CrossRef] [PubMed]
- Hirve, N.; Rajanikanth, V.; Hogan, P.G.; Gudlur, A. Coiled-Coil Formation Conveys a STIM1 Signal from ER Lumen to Cytoplasm. Cell Rep. 2018, 22, 72–83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calloway, N.; Holowka, D.; Baird, B. A basic sequence in STIM1 promotes Ca2+ influx by interacting with the C-terminal acidic coiled coil of Orai1. Biochemistry 2010, 49, 1067–1071. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carafoli, E. Calcium pump of the plasma membrane. Physiol. Rev. 1991, 71, 129–153. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.N.; Zeng, W.; Kim, J.Y.; Yuan, J.P.; Han, L.; Muallem, S.; Worley, P.F. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat. Cell Biol. 2006, 8, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.P.; Zeng, W.; Huang, G.N.; Worley, P.F.; Muallem, S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat. Cell Biol. 2007, 9, 636–645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Q.; Fang, Y.; Li, Y.; Liu, H.; Zhu, M.; Hu, X.; Zhou, J.; Deng, A.; Shen, B.; Chen, H. Pregnancy-Specific Beta-1-Glycoprotein 1 Increases HTR-8/SVneo Cell Migration through the Orai1/Akt Signaling Pathway. Biomolecules 2024, 14, 293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, Y.; Meng, Q.; Wang, Q.; Wu, M.; Fang, Y.; Tu, C.; Hu, X.; Shen, B.; Chen, H.; Xu, X. Pregnancy-Specific Glycoprotein 9 Enhances Store-Operated Calcium Entry and Nitric Oxide Release in Human Umbilical Vein Endothelial Cells. Diagnostics 2023, 13, 1134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ha, C.T.; Wu, J.A.; Irmak, S.; Lisboa, F.A.; Dizon, A.M.; Warren, J.W.; Ergun, S.; Dveksler, G.S. Human pregnancy specific beta-1-glycoprotein 1 (PSG1) has a potential role in placental vascular morphogenesis. Biol. Reprod. 2010, 83, 27–35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tu, C.; Tao, F.; Qin, Y.; Wu, M.; Cheng, J.; Xie, M.; Shen, B.; Ren, J.; Xu, X.; Huang, D.; et al. Serum proteins differentially expressed in early- and late-onset preeclampsia assessed using iTRAQ proteomics and bioinformatics analyses. PeerJ 2020, 8, e9753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abou-Kheir, W.; Barrak, J.; Hadadeh, O.; Daoud, G. HTR-8/SVneo cell line contains a mixed population of cells. Placenta 2017, 50, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.H.; Hwang, H.M.; Yi, B.G.; Lim, H.K.; Jeon, B.H.; Hoe, K.L.; Kwon, Y.G.; Won, M.H.; Kim, Y.M.; Berkowitz, D.E.; et al. Arginase II Contributes to the Ca2+/CaMKII/eNOS Axis by Regulating Ca2+ Concentration Between the Cytosol and Mitochondria in a p32-Dependent Manner. J. Am. Heart Assoc. 2018, 7, e009579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brini, M.; Carafoli, E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb. Perspect. Biol. 2011, 3, a004168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kline, D.; Kline, J.T. Thapsigargin activates a calcium influx pathway in the unfertilized mouse egg and suppresses repetitive calcium transients in the fertilized egg. J. Biol. Chem. 1992, 267, 17624–17630. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, Y.M.; Cuthbertson, K.S.R. Thapsigargin induces cytoplasmic free Ca2+ oscillations in mouse oocytes. Cell Calcium 1995, 17, 154–164. [Google Scholar] [CrossRef]
- Wakai, T.; Zhang, N.; Vangheluwe, P.; Fissore, R.A. Regulation of endoplasmic reticulum Ca2+ oscillations in mammalian eggs. J. Cell Sci. 2013, 126, 5714–5724. [Google Scholar] [CrossRef]
- Brini, M.; Carafoli, E. Calcium pumps in health and disease. Physiol. Rev. 2009, 89, 1341–1378. [Google Scholar] [CrossRef] [PubMed]
- Moreau, R.; Daoud, G.; Masse, A.; Simoneau, L.; Lafond, J. Expression and role of calcium-ATPase pump and sodium-calcium exchanger in differentiated trophoblasts from human term placenta. Mol. Reprod. Dev. 2003, 65, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Okunade, G.W.; Miller, M.L.; Pyne, G.J.; Sutliff, R.L.; O’Connor, K.T.; Neumann, J.C.; Andringa, A.; Miller, D.A.; Prasad, V.; Doetschman, T.; et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J. Biol. Chem. 2004, 279, 33742–33750. [Google Scholar] [CrossRef] [PubMed]
- Strehler, E.E.; Caride, A.J.; Filoteo, A.G.; Xiong, Y.; Penniston, J.T.; Enyedi, A. Plasma membrane Ca2+ ATPases as dynamic regulators of cellular calcium handling. Ann. N. Y. Acad. Sci. 2007, 1099, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, H.W.; Penniston, J.T. Purification of the Ca2+-stimulated ATPase activator from human erythrocytes. Its membership in the class of Ca2+-binding modulator proteins. J. Biol. Chem. 1978, 253, 4676–4682. [Google Scholar] [CrossRef] [PubMed]
- DeMarco, S.J.; Chicka, M.C.; Strehler, E.E. Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H+ exchanger regulatory factor 2 in apical plasma membranes. J. Biol. Chem. 2002, 277, 10506–10511. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Zeng, W.; Han, Y.; John, S.; Ottolia, M.; Jiang, Y. Structural mechanisms of the human cardiac sodium-calcium exchanger NCX1. Nat. Commun. 2023, 14, 6181. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Belkacemi, L.; Bédard, I.; Simoneau, L.; Lafond, J. Calcium channels, transporters and exchangers in placenta: A review. Cell Calcium 2005, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Michel, L.Y.M.; Verkaart, S.; Koopman, W.J.H.; Willems, P.H.G.M.; Hoenderop, J.G.J.; Bindels, R.J.M. Function and regulation of the Na+-Ca2+ exchanger NCX3 splice variants in brain and skeletal muscle. J. Biol. Chem. 2014, 289, 11293–11303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liao, J.; Li, H.; Zeng, W.; Sauer, D.B.; Belmares, R.; Jiang, Y. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 2012, 335, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Szerencsei, R.T.; Kinjo, T.G.; Schnetkamp, P.P. The topology of the C-terminal sections of the NCX1 Na(+) /Ca(2+) exchanger and the NCKX2 Na(+)/Ca(2+)-K(+) exchanger. Channels 2013, 7, 109–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, V.; O’Halloran, D.M. Recent structural and functional insights into the family of sodium calcium exchangers. Genesis 2014, 52, 93–109. [Google Scholar] [CrossRef] [PubMed]
- DiPolo, R.; Beaugé, L. Sodium/calcium exchanger: Influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 2006, 86, 155–203. [Google Scholar] [CrossRef] [PubMed]
- Kofuji, P.; Hadley, R.W.; Kieval, R.S.; Lederer, W.J.; Schulze, D.H. Expression of the Na-Ca exchanger in diverse tissues: A study using the cloned human cardiac Na-Ca exchanger. Am. J. Physiol. 1992, 263 Pt 1, C1241–C1249. [Google Scholar] [CrossRef] [PubMed]
- Moreau, R.; Simoneau, L.; Lafond, J. Calcium fluxes in human trophoblast (BeWo) cells: Calcium channels, calcium-ATPase, and sodium-calcium exchanger expression. Mol. Reprod. Dev. 2003, 64, 189–198. [Google Scholar] [CrossRef] [PubMed]
- King, A.J.; Siegel, M.; He, Y.; Nie, B.; Wang, J.; Koo-McCoy, S.; Minassian, N.A.; Jafri, Q.; Pan, D.; Kohler, J.; et al. Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci. Transl. Med. 2018, 10, eaam6474. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sibley, C.P.; Brownbill, P.; Glazier, J.D.; Greenwood, S.L. Knowledge needed about the exchange physiology of the placenta. Placenta. 2018, 64 (Suppl. 1), S9–S15. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D: Production, Metabolism and Mechanisms of Action. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 20 January 2000. [Google Scholar] [PubMed]
- Bikle, D.D.; Gee, E. Free, and not total, 1,25-dihydroxyvitamin D regulates 25- hydroxyvitamin D metabolism by keratinocytes. Endocrinology 1989, 124, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Hoenderop, J.G.J.; van der Kemp, A.W.C.M.; Urben, C.M.; Strugnell, S.A.; Bindels, R.J.M. Effects of vitamin D compounds on renal and intestinal Ca2+ transport proteins in 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. Kidney Int. 2004, 66, 1082–1089. [Google Scholar] [CrossRef]
- Glazier, J.D.; Atkinson, D.E.; Thornburg, K.L.; Sharpe, P.T.; Edwards, D.; Boyd, R.D.; Sibley, C.P. Gestational changes in Ca2+ transport across rat placenta and mRNA for calbindin9K and Ca(2+)-ATPase. Am. J. Physiol. 1992, 263 Pt 2, R930–R935. [Google Scholar] [CrossRef] [PubMed]
- Glenney, J.R., Jr.; Glenney, P. Comparison of Ca++-regulated events in the intestinal brush border. J. Cell Biol. 1985, 100, 754–763. [Google Scholar] [CrossRef]
- Bikle, D.D.; Munson, S.; Chafouleas, J. Calmodulin may mediate 1,25-dihydroxyvitamin D-stimulated intestinal calcium transport. FEBS Lett. 1984, 174, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D.; Munson, S. The villus gradient of brush border membrane calmodulin and the calcium-independent calmodulin-binding protein parallels that of calcium-accumulating ability. Endocrinology 1986, 118, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Kutuzova, G.D.; Deluca, H.F. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D (3) stimulated calcium absorption and clarify its immunomodulatory properties. Arch. Biochem. Biophys. 2004, 432, 152–166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, W.L.; Hagler, H.K.; Jones, R.G.; Farmer, G.R.; Cooper, O.J.; Martin, J.H.; Bridges, G.E.; Goodman, D.B. Cryofixation, ultracryomicrotomy, and X-ray microanalysis of enterocytes from chick duodenum: Vitamin-D-induced formation of an apical tubulovesicular system. Anat. Rec. 1991, 229, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Kip, S.N.; Strehler, E.E. Vitamin D3 upregulates plasma membrane Ca2+-ATPase expression and potentiates apico-basal Ca2+ flux in MDCK cells. Am. J. Physiol. Renal Physiol. 2004, 286, F363–F369. [Google Scholar] [CrossRef] [PubMed]
- Ryan, Z.C.; Craig, T.A.; Filoteo, A.G.; Westendorf, J.J.; Cartwright, E.J.; Neyses, L.; Strehler, E.E.; Kumar, R. Deletion of the intestinal plasma membrane calcium pump, isoform 1, Atp2b1, in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25-dihydroxyvitamin D3. Biochem. Biophys. Res. Commun. 2015, 467, 152–156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wasserman, R.H.; Chandler, J.S.; Meyer, S.A.; Smith, C.A.; Brindak, M.E.; Fullmer, C.S.; Penniston, J.T.; Kumar, R. Intestinal calcium transport and calcium extrusion processes at the basolateral membrane. J. Nutr. 1992, 122 (Suppl. 3), 662–671. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.S.; Lee, K.Y.; Choi, K.C.; Ryu, Y.H.; Paik, S.G.; Oh, G.T.; Jeung, E.B. Phenotype of a calbindin-D9k gene knockout is compensated for by the induction of other calcium transporter genes in a mouse model. J. Bone Miner. Res. 2007, 22, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Xie, Y.; Li, G.; Kong, J.; Feng, J.Q.; Li, Y.C. Critical role of calbindin-D28k in calcium homeostasis revealed by mice lacking both vitamin D receptor and calbindin-D28k. J. Biol. Chem. 2004, 279, 52406–52413. [Google Scholar] [CrossRef] [PubMed]
- Munson, S.; Wang, Y.; Chang, W.; Bikle, D.D. Myosin 1a Regulates Osteoblast Differentiation Independent of Intestinal Calcium Transport. J. Endocr. Soc. 2019, 3, 1993–2011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strid, H.; Powell, T.L. ATP-dependent Ca2+ transport is up-regulated during third trimester in human syncytiotrophoblast basal membranes. Pediatr. Res. 2000, 48, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Kosk-Kosicka, D.; Zylińska, L. Protein kinase C and calmodulin effects on the plasma membrane Ca2+-ATPase from excitable and nonexcitable cells. Mol. Cell Biochem. 1997, 173, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Jeung, E.B.; Leung, P.C.; Krisinger, J. The human calbindin-D9k gene. Complete structure and implications on steroid hormone regulation. J. Mol. Biol. 1994, 235, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.C.; Leung, P.C.; Jeung, E.B. Biology and physiology of Calbindin-D9k in female reproductive tissues: Involvement of steroids and endocrine disruptors. Reprod. Biol. Endocrinol. 2005, 3, 66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Belkacemi, L.; Gariépy, G.; Mounier, C.; Simoneau, L.; Lafond, J. Expression of calbindin-D28k (CaBP28k) in trophoblasts from human term placenta. Biol. Reprod. 2003, 68, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Sélénou, C.; Brioude, F.; Giabicani, E.; Sobrier, M.L.; Netchine, I. IGF2: Development, Genetic and Epigenetic Abnormalities. Cells 2022, 11, 1886. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dilworth, M.R.; Kusinski, L.C.; Cowley, E.; Ward, B.S.; Husain, S.M.; Constância, M.; Sibley, C.P.; Glazier, J.D. Placental-specific Igf2 knockout mice exhibit hypocalcemia and adaptive changes in placental calcium transport. Proc. Natl. Acad. Sci. USA 2010, 107, 3894–3899. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baral, K.; Rotwein, P. The Insulin-like Growth Factor. 2 Gene in Mammals: Organizational Complexity within a Conserved Locus. PLoS ONE 2019, 14, e0219155. [Google Scholar] [CrossRef]
- Sferruzzi-Perri, A.N.; Vaughan, O.R.; Coan, P.M.; Suciu, M.C.; Darbyshire, R.; Constancia, M.; Burton, G.J.; Fowden, A.L. Placental-specific Igf2 deficiency alters developmental adaptations to undernutrition in mice. Endocrinology 2011, 152, 3202–3212. [Google Scholar] [CrossRef] [PubMed]
- Sferruzzi-Perri, A.N.; Lopez-Tello, J.; Salazar-Petres, E. Placental adaptations supporting fetal growth during normal and adverse gestational environments. Exp. Physiol. 2023, 108, 371–397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gohlke, B.C.; Fahnenstich, H.; Dame, C.; Albers, N. Longitudinal data for intrauterine levels of fetal IGF-I and IGF-II. Horm. Res. 2004, 61, 200–204. [Google Scholar] [CrossRef]
- Oxvig, C. The role of PAPP-A in the IGF system: Location, location, location. J. Cell Commun. Signal. 2015, 9, 177–187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barrios, V.; Chowen, J.A.; Martín-Rivada, Á.; Guerra-Cantera, S.; Pozo, J.; Yakar, S.; Rosenfeld, R.G.; Pérez-Jurado, L.A.; Suárez, J.; Argente, J. Pregnancy-Associated Plasma Protein (PAPP)-A2 in Physiology and Disease. Cells 2021, 10, 3576. [Google Scholar] [CrossRef]
- Henderson, S.T.; Brierley, G.V.; Surinya, K.H.; Priebe, I.K.; Catcheside, D.E.; Wallace, J.C.; Forbes, B.E.; Cosgrove, L.J. Delineation of the IGF-II C domain elements involved in binding and activation of the IR-A, IR-B and IGF-IR. Growth Horm. IGF Res. 2015, 25, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Bergman, D.; Halje, M.; Nordin, M.; Engström, W. Insulin-like growth factor 2 in development and disease: A mini-review. Gerontology 2013, 59, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Chao, W.; D’Amore, P.A. IGF2: Epigenetic regulation and role in development and disease. Cytokine Growth Factor. Rev. 2008, 19, 111–120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matthews, J.C.; Beveridge, M.J.; Dialynas, E.; Bartke, A.; Kilberg, M.S.; Novak, D.A. Placental anionic and cationic amino acid transporter expression in growth hormone overexpressing and null IGF-II or null IGF-I receptor mice. Placenta 1999, 20, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Hayward, C.E.; McIntyre, K.R.; Sibley, C.P.; Greenwood, S.L.; Dilworth, M.R. Mechanisms Underpinning Adaptations in Placental Calcium Transport in Normal Mice and Those with Fetal Growth Restriction. Front. Endocrinol. 2018, 9, 671. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abi Habib, W.; Brioude, F.; Azzi, S.; Salem, J.; Das Neves, C.; Personnier, C.; Chantot-Bastaraud, S.; Keren, B.; Le Bouc, Y.; Harbison, M.D.; et al. 11p15 ICR1 Partial Deletions Associated with IGF2/H19 DMR Hypomethylation and Silver-Russell Syndrome. Hum. Mutat. 2017, 38, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Yamazawa, K.; Kagami, M.; Nagai, T.; Kondoh, T.; Onigata, K.; Maeyama, K.; Hasegawa, T.; Hasegawa, Y.; Yamazaki, T.; Mizuno, S.; et al. Molecular and clinical findings and their correlations in Silver-Russell syndrome: Implications for a positive role of IGF2 in growth determination and differential imprinting regulation of the IGF2-H19 domain in bodies and placentas. J. Mol. Med. 2008, 86, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Gaillot-Durand, L.; Brioude, F.; Beneteau, C.; Le Breton, F.; Massardier, J.; Michon, L.; Devouassoux-Shisheboran, M.; Allias, F. Placental Pathology in Beckwith-Wiedemann Syndrome According to Genotype/Epigenotype Subgroups. Fetal Pediatr. Pathol. 2018, 37, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Armes, J.E.; McGown, I.; Williams, M.; Broomfield, A.; Gough, K.; Lehane, F.; Lourie, R. The placenta in Beckwith-Wiedemann syndrome: Genotype-phenotype associations, excessive extravillous trophoblast and placental mesenchymal dysplasia. Pathology 2012, 44, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Azzi, S.; Abi Habib, W.; Netchine, I. Beckwith-Wiedemann and Russell-Silver Syndromes: From new molecular insights to the comprehension of imprinting regulation. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 30–38. [Google Scholar] [CrossRef]
- Duval, C.; Dilworth, M.R.; Tunster, S.J.; Kimber, S.J.; Glazier, J.D. PTHrP is essential for normal morphogenetic and functional development of the murine placenta. Dev. Biol. 2017, 430, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Philbrick, W.M.; Wysolmerski, J.J.; Galbraith, S.; Holt, E.; Orloff, J.J.; Yang, K.H.; Vasavada, R.C.; Weir, E.C.; Broadus, A.E.; Stewart, A.F. Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol. Rev. 1996, 76, 127–173. [Google Scholar] [CrossRef] [PubMed]
- Wysolmerski, J.J.; Stewart, A.F. The physiology of parathyroid hormone-related protein: An emerging role as a developmental factor. Annu. Rev. Physiol. 1998, 60, 431–460. [Google Scholar] [CrossRef] [PubMed]
- Maeda, S.; Sutliff, R.L.; Qian, J.; Lorenz, J.N.; Wang, J.; Tang, H.; Nakayama, T.; Weber, C.; Witte, D.; Strauch, A.R.; et al. Targeted overexpression of parathyroid hormone related protein (PTHrP) to vascular smooth muscle in transgenic mice lowers blood pressure and alters vascular contractility. Endocrinology 1999, 140, 1815–1825. [Google Scholar] [CrossRef]
- Bruns, M.E.; Ferguson, J.E., 2nd; Bruns, D.E.; Burton, D.W.; Brandt, D.W.; Jüppner, H.; Segre, G.V.; Deftos, L.J. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acid in human amnion and chorion-decidua: Implications for secretion and function. Am. J. Obstet. Gynecol. 1995, 173 Pt 1, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Wysolmerski, J.J. Parathyroid hormone-related protein: An update. J. Clin. Endocrinol. Metab. 2012, 97, 2947–2956. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Librizzi, M.; Naselli, F.; Abruscato, G.; Luparello, C.; Caradonna, F. Parathyroid Hormone Related Protein (PTHrP)-Associated Molecular Signatures in Tissue Differentiation and Non-Tumoral Diseases. Biology 2023, 12, 950. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pioszak, A.A.; Parker, N.R.; Gardella, T.J.; Xu, H.E. Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides. J. Biol. Chem. 2009, 284, 28382–28391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Care, A.D.; Abbas, S.K.; Pickard, D.W.; Barri, M.; Drinkhill, M.; Findlay, J.B.; White, I.R.; Caple, I.W. Stimulation of ovine placental transport of calcium and magnesium by mid-molecule fragments of human parathyroid hormone-related protein. Exp. Physiol. 1990, 75, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, C.S.; Lanske, B.; Hunzelman, J.L.; Guo, J.; Karaplis, A.C.; Kronenberg, H.M. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc. Natl. Acad. Sci. USA 1996, 93, 15233–15238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jans, D.A.; Thomas, R.J.; Gillespie, M.T. Parathyroid hormone-related protein (PTHrP): A nucleocytoplasmic shuttling protein with distinct paracrine and intracrine roles. Vitam. Horm. 2003, 66, 345–384. [Google Scholar] [CrossRef] [PubMed]
- Vilardaga, J.P.; Clark, L.J.; White, A.D.; Sutkeviciute, I.; Lee, J.Y.; Bahar, I. Molecular Mechanisms of PTH/PTHrP Class B GPCR Signaling and Pharmacological Implications. Endocr. Rev. 2023, 44, 474–491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klenk, C.; Hommers, L.; Lohse, M.J. Proteolytic Cleavage of the Extracellular Domain Affects Signaling of Parathyroid Hormone 1 Receptor. Front. Endocrinol. 2022, 13, 839351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cary, B.P.; Zhang, X.; Cao, J.; Johnson, R.M.; Piper, S.J.; Gerrard, E.J.; Wootten, D.; Sexton, P.M. New Insights into the Structure and Function of Class B1 GPCRs. Endocr. Rev. 2023, 44, 492–517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wehbi, V.L.; Stevenson, H.P.; Feinstein, T.N.; Calero, G.; Romero, G.; Vilardaga, J.P. Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gβγ complex. Proc. Natl. Acad. Sci. USA 2013, 110, 1530–1535. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El-Hashash, A.H.; Warburton, D.; Kimber, S.J. Genes and signals regulating murine trophoblast cell development. Mech. Dev. 2010, 127, 1–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, L.; Qi, S.T.; Miao, D.Q.; Liang, X.W.; Li, H.; Ou, X.H.; Huang, X.; Yang, C.R.; Ouyang, Y.C.; Hou, Y.; et al. The roles of parathyroid hormone-like hormone during mouse preimplantation embryonic development. PLoS ONE 2012, 7, e40528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macgill, K.; Moseley, J.M.; Martin, T.J.; Brennecke, S.P.; Rice, G.E.; Wlodek, M.E. Vascular effects of PTHrP (1-34) and PTH (1-34) in the human fetal-placental circulation. Placenta 1997, 18, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Bond, H.; Dilworth, M.R.; Baker, B.; Cowley, E.; Requena Jimenez, A.; Boyd, R.D.; Husain, S.M.; Ward, B.S.; Sibley, C.P.; Glazier, J.D. Increased maternofetal calcium flux in parathyroid hormone-related protein-null mice. J. Physiol. 2008, 586, 2015–2025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kovacs, C.S.; Chafe, L.L.; Fudge, N.J.; Friel, J.K.; Manley, N.R. PTH regulates fetal blood calcium and skeletal mineralization independently of PTHrP. Endocrinology 2001, 142, 4983–4993. [Google Scholar] [CrossRef] [PubMed]
- Karaplis, A.C.; Luz, A.; Glowacki, J.; Bronson, R.T.; Tybulewicz, V.L.; Kronenberg, H.M.; Mulligan, R.C. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994, 8, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Lanske, B.; Kronenberg, H.M. Parathyroid hormone-related peptide (PTHrP) and parathyroid hormone (PTH)/PTHrP receptor. Crit. Rev. Eukaryot. Gene Expr. 1998, 8, 297–320. [Google Scholar] [CrossRef] [PubMed]
- Sirico, A.; Dell’Aquila, M.; Tartaglione, L.; Moresi, S.; Farì, G.; Pitocco, D.; Arena, V.; Lanzone, A. PTH-rP and PTH-R1 Expression in Placentas from Pregnancies Complicated by Gestational Diabetes: New Insights into the Pathophysiology of Hyperglycemia in Pregnancy. Diagnostics 2021, 11, 1356. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miao, D.; Su, H.; He, B.; Gao, J.; Xia, Q.; Zhu, M.; Gu, Z.; Goltzman, D.; Karaplis, A.C. Severe growth retardation and early lethality in mice lacking the nuclear localization sequence and C-terminus of PTH-related protein. Proc. Natl. Acad. Sci. USA 2008, 105, 20309–20314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anderson, J.A.; Grabowska, A.M.; Watson, S.A. PTHrP increases transcriptional activity of the integrin subunit alpha5. Br. J. Cancer 2007, 96, 1394–1403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhatia, V.; Mula, R.V.; Falzon, M. Parathyroid hormone-related protein regulates integrin α6 and β4 levels via transcriptional and post-translational pathways. Exp. Cell Res. 2013, 319, 1419–1430. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gorvin, C.M. Molecular and clinical insights from studies of calcium-sensing receptor mutations. J. Mol. Endocrinol. 2019, 63, R1–R16. [Google Scholar] [CrossRef] [PubMed]
- Conigrave, A.D. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Front. Physiol. 2016, 7, 563. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, W.; Tu, C.; Chen, T.H.; Bikle, D.; Shoback, D. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci. Signal. 2008, 1, ra1. [Google Scholar] [CrossRef]
- Geng, Y.; Mosyak, L.; Kurinov, I.; Zuo, H.; Sturchler, E.; Cheng, T.C.; Subramanyam, P.; Brown, A.P.; Brennan, S.C.; Mun, H.C.; et al. Structural mechanism of ligand activation in human calcium-sensing receptor. eLife 2016, 5, e13662. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, T.; Zou, J.; Miller, C.L.; Gorkhali, R.; Yang, J.Y.; Schilmiller, A.; Wang, S.; Huang, K.; Brown, E.M.; et al. 2016 Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist. Sci. Adv. 2016, 2, e1600241. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, C.S.; Ho-Pao, C.L.; Hunzelman, J.L.; Lanske, B.; Fox, J.; Seidman, J.G.; Seidman, C.E.; Kronenberg, H.M. Regulation of murine fetal-placental calcium metabolism by the calcium-sensing receptor. J. Clin. Investig. 1998, 101, 2812–2820. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kovacs, C.S. The Role of PTHrP in Regulating Mineral Metabolism During Pregnancy, Lactation, and Fetal/Neonatal Development. Clinic Rev. Bone Miner. Metab. 2014, 12, 142–164. [Google Scholar] [CrossRef]
- Sadacharan, D.; Mahadevan, S.; Rao, S.S.; Kumar, A.P.; Swathi, S.; Kumar, S.; Kannan, S. Neonatal Severe Primary Hyperparathyroidism: A Series of Four Cases and their Long-term Management in India. Indian. J. Endocrinol. Metab. 2020, 24, 196–201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gorvin, C.M.; Rogers, A.; Hastoy, B.; Tarasov, A.I.; Frost, M.; Sposini, S.; Inoue, A.; Whyte, M.P.; Rorsman, P.; Hanyaloglu, A.C.; et al. AP2σ Mutations Impair Calcium-Sensing Receptor Trafficking and Signaling, and Show an Endosomal Pathway to Spatially Direct G-Protein Selectivity. Cell Rep. 2018, 22, 1054–1066. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ganor, Y.; Drillet-Dangeard, A.S.; Lopalco, L.; Tudor, D.; Tambussi, G.; Delongchamps, N.B.; Zerbib, M.; Bomsel, M. Calcitonin gene-related peptide inhibits Langerhans cell-mediated HIV-1 transmission. J. Exp. Med. 2013, 210, 2161–2170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schifter, S. Expression of the calcitonin gene family in medullary thyroid carcinoma. Peptides 1997, 18, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Poyner, D.R.; Sexton, P.M.; Marshall, I.; Smith, D.M.; Quirion, R.; Born, W.; Muff, R.; Fischer, J.A.; Foord, S.M. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev. 2002, 54, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Yallampalli, C.; Chauhan, M.; Endsley, J.; Sathishkumar, K. Calcitonin gene related family peptides: Importance in normal placental and fetal development. Adv. Exp. Med. Biol. 2014, 814, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Hay, D.L.; Garelja, M.L.; Poyner, D.R.; Walker, C.S. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br. J. Pharmacol. 2018, 175, 3–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Granstein, R.D.; Wagner, J.A.; Stohl, L.L.; Ding, W. Calcitonin gene-related peptide: Key regulator of cutaneous immunity. Acta Physiol. 2015, 213, 586–594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kovacs, C.S.; Chafe, L.L.; Woodland, M.L.; McDonald, K.R.; Fudge, N.J.; Wookey, P.J. Calcitropic gene expression suggests a role for the intraplacental yolk sac in maternal-fetal calcium exchange. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E721–E732. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Zhu, L.J.; Polihronis, M.; Cameron, S.T.; Baird, D.T.; Schatz, F.; Dua, A.; Ying, Y.K.; Bagchi, M.K.; Bagchi, I.C. Progesterone induces calcitonin gene expression in human endometrium within the putative window of implantation. J. Clin. Endocrinol. Metab. 1998, 83, 4443–4450. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.J.; Bagchi, M.K.; Bagchi, I.C. Attenuation of calcitonin gene expression in pregnant rat uterus leads to a block in embryonic implantation. Endocrinology 1998, 139, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Kuestner, R.E.; Elrod, R.D.; Grant, F.J.; Hagen, F.S.; Kuijper, J.L.; Matthewes, S.L.; O’Hara, P.J.; Sheppard, P.O.; Stroop, S.D.; Thompson, D.L.; et al. Cloning and characterization of an abundant subtype of the human calcitonin receptor. Mol. Pharmacol. 1994, 46, 246–255. [Google Scholar] [PubMed]
- Gao, F.; Guo, Y.; Chen, X.; Gu, Q.; Huang, S.; Chen, Q.; Xu, X.; Zeng, K.; Zhou, H.; Zou, Y.; et al. DNA Methylation Pattern of CALCA and CALCB in Extremely Premature Infants with Monochorionic Triplets after Single-Embryo Transfer. Oxid. Med. Cell Longev. 2021, 2021, 1438837. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, Y.L.; Vegiraju, S.; Gangula, P.R.; Kondapaka, S.B.; Wimalawansa, S.J.; Yallampalli, C. Expression and regulation of calcitonin gene-related Peptide receptor in rat placentas. Biol. Reprod. 2002, 67, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Brain, S.D.; Williams, T.J.; Tippins, J.R.; Morris, H.R.; MacIntyre, I. Calcitonin gene-related peptide is a potent vasodilator. Nature 1985, 313, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.S.; Conner, A.C.; Poyner, D.R.; Hay, D.L. Regulation of signal transduction by calcitonin gene-related peptide receptors. Trends Pharmacol. Sci. 2010, 31, 476–483. [Google Scholar] [CrossRef] [PubMed]
- McLatchie, L.M.; Fraser, N.J.; Main, M.J.; Wise, A.; Brown, J.; Thompson, N.; Solari, R.; Lee, M.G.; Foord, S.M. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998, 393, 333–339. [Google Scholar] [CrossRef] [PubMed]
- McDonald, K.R.; Fudge, N.J.; Woodrow, J.P.; Friel, J.K.; Hoff, A.O.; Gagel, R.F.; Kovacs, C.S. Ablation of calcitonin/calcitonin gene-related peptide-alpha impairs fetal magnesium but not calcium homeostasis. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E218–E226. [Google Scholar] [CrossRef] [PubMed]
- Ferioli, S.; Zierler, S.; Zaißerer, J.; Schredelseker, J.; Gudermann, T.; Chubanov, V. TRPM6 and TRPM7 differentially contribute to the relief of heteromeric TRPM6/7 channels from inhibition by cytosolic Mg2+ and Mg·ATP. Sci. Rep. 2017, 7, 8806. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nadezhdin, K.D.; Correia, L.; Narangoda, C.; Patel, D.S.; Neuberger, A.; Gudermann, T.; Kurnikova, M.G.; Chubanov, V.; Sobolevsky, A.I. Structural mechanisms of TRPM7 activation and inhibition. Nat. Commun. 2023, 14, 2639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walder, R.Y.; Yang, B.; Stokes, J.B.; Kirby, P.A.; Cao, X.; Shi, P.; Searby, C.C.; Husted, R.F.; Sheffield, V.C. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum. Mol. Genet. 2009, 18, 4367–4375. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bennin, D.; Hartery, S.A.; Kirby, B.J.; Maekawa, A.S.; St-Arnaud, R.; Kovacs, C.S. Loss of 24-hydroxylated catabolism increases calcitriol and fibroblast growth factor 23 and alters calcium and phosphate metabolism in fetal mice. JBMR Plus 2024, 8, ziae012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delvin, E.E.; Glorieux, F.H.; Salle, B.L.; David, L.; Varenne, J.P. Control of vitamin D metabolism in preterm infants: Feto-maternal relationships. Arch. Dis. Child. 1982, 57, 754–757. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dalgård, C.; Petersen, M.S.; Steuerwald, U.; Weihe, P.; Grandjean, P. Umbilical Cord Serum 25-Hydroxyvitamin D Concentrations and Relation to Birthweight, Head Circumference and Infant Length at Age 14 Days. Paediatr. Perinat. Epidemiol. 2016, 30, 238–245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walker, V.P.; Zhang, X.; Rastegar, I.; Liu, P.T.; Hollis, B.W.; Adams, J.S.; Modlin, R.L. Cord blood vitamin D status impacts innate immune responses. J. Clin. Endocrinol. Metab. 2011, 96, 1835–1843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chun, R.F.; Shieh, A.; Gottlieb, C.; Yacoubian, V.; Wang, J.; Hewison, M.; Adams, J.S. Vitamin D Binding Protein and the Biological Activity of Vitamin, D. Front. Endocrinol. 2019, 10, 718. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simner, C.L.; Ashley, B.; Cooper, C.; Harvey, N.C.; Lewis, R.M.; Cleal, J.K. Investigating a suitable model for the study of vitamin D mediated regulation of human placental gene expression. J. Steroid Biochem. Mol. Biol. 2020, 199, 105576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nykjaer, A.; Dragun, D.; Walther, D.; Vorum, H.; Jacobsen, C.; Herz, J.; Melsen, F.; Christensen, E.I.; Willnow, T.E. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 1999, 96, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Sheikh-Hamad, D.; Holliday, M.; Li, Q. Megalin-Mediated Trafficking of Mitochondrial Intracrines: Relevance to Signaling and Metabolism. J. Cell Immunol. 2021, 3, 364–369. [Google Scholar] [PubMed] [PubMed Central]
- Ockleford, C.D.; Whyte, A. Differeniated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: Coated vesicles. J. Cell Sci. 1977, 25, 293–312. [Google Scholar] [CrossRef] [PubMed]
- King, B.F. Absorption of peroxidase-conjugated immunoglobulin G by human placenta: An in vitro study. Placenta 1982, 3, 395–406. [Google Scholar] [CrossRef] [PubMed]
- King, B.F. The organization of actin filaments in human placental villi. J. Ultrastruct. Res. 1983, 85, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Storm, T.; Christensen, E.I.; Christensen, J.N.; Kjaergaard, T.; Uldbjerg, N.; Larsen, A.; Honoré, B.; Madsen, M. Megalin Is Predominantly Observed in Vesicular Structures in First and Third Trimester Cytotrophoblasts of the Human Placenta. J. Histochem. Cytochem. 2016, 64, 769–784. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, S.; Chun, R.; Gacad, M.A.; Ren, S.; Chen, H.; Adams, J.S. Regulation of 1,25-dihydroxyvitamin d synthesis by intracellular vitamin d binding protein-1. Endocrinology 2002, 143, 4135. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C. Vitamin D and Its Target Genes. Nutrients 2022, 14, 1354. [Google Scholar] [CrossRef]
- Allen, B.L.; Taatjes, D.J. The Mediator complex: A central integrator of transcription. Nat. Rev. Mol. Cell Biol. 2015, 16, 155–166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Levine, M.A. Diagnosis and Management of Vitamin D Dependent Rickets. Front. Pediatr. 2020, 8, 315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fortin, C.A.; Girard, L.; Bonenfant, C.; Leblanc, J.; Cruz-Marino, T.; Blackburn, M.E.; Desmeules, M.; Bouchard, L. Benefits of Newborn Screening for Vitamin D-Dependant Rickets Type 1A in a Founder Population. Front. Endocrinol. (Lausanne) 2022, 13, 887371. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schlingmann, K.P.; Kaufmann, M.; Weber, S.; Irwin, A.; Goos, C.; John, U.; Misselwitz, J.; Klaus, G.; Kuwertz-Bröking, E.; Fehrenbach, H.; et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N. Engl. J. Med. 2011, 365, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Varshney, S.; Adela, R.; Kachhawa, G.; Dada, R.; Kulshreshtha, V.; Kumari, R.; Agarwal, R.; Khadgawat, R. Disrupted placental vitamin D metabolism and calcium signaling in gestational diabetes and pre-eclampsia patients. Endocrine 2023, 80, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, T.; Huo, Y.; Liu, L.; Liu, S.; Yin, X.; Wang, R.; Gao, X. Placenta expression of vitamin D and related genes in pregnant women with gestational diabetes mellitus. J. Steroid Biochem. Mol. Biol. 2020, 204, 105754. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Davaatseren, M.; Lee, S. Rare PTH Gene Mutations Causing Parathyroid Disorders: A Review. Endocrinol. Metab. 2020, 35, 64–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parkinson, D.B.; Thakker, R.V. A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nat. Genet. 1992, 1, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Bringhurst, F.R.; Demay, M.B.; Kronenberg, H.M. Hormones and Disorders of Mineral Metabolism. In Williams Textbook of Endocrinology, 14th ed.; Melmed, S., Koenig, R., Rosen, C.J., Auchus, R.J., Goldfine, A.B., Eds.; Chapter 29; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1196–1255. ISBN 9780323555968. [Google Scholar]
- Bastepe, M.; Raas-Rothschild, A.; Silver, J.; Weissman, I.; Wientroub, S.; Jüppner, H.; Gillis, D. A form of Jansen’s metaphyseal chondrodysplasia with limited metabolic and skeletal abnormalities is caused by a novel activating parathyroid hormone (PTH)/PTH-related peptide receptor mutation. J. Clin. Endocrinol. Metab. 2004, 89, 3595–3600. [Google Scholar] [CrossRef] [PubMed]
- Schipani, E.; Kruse, K.; Jüppner, H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 1995, 268, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Savoldi, G.; Izzi, C.; Signorelli, M.; Bondioni, M.P.; Romani, C.; Lanzi, G.; Moratto, D.; Verdoni, L.; Pinotti, M.; Prefumo, F.; et al. Prenatal presentation and postnatal evolution of a patient with Jansen metaphyseal dysplasia with a novel missense mutation in PTH1R. Am. J. Med. Genet. A 2013, 161, 2614–2619. [Google Scholar] [CrossRef] [PubMed]
- Turan, S.; Bastepe, M. The GNAS complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene. Horm. Res. Paediatr. 2013, 80, 229–241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lemos, M.C.; Thakker, R.V. GNAS mutations in Pseudohypoparathyroidism type 1a and related disorders. Hum. Mutat. 2015, 36, 11–19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chase, L.R.; Melson, G.L.; Aurbach, G.D. Pseudohypoparathyroidism: Defective excretion of 3’,5’-AMP in response to parathyroid hormone. J. Clin. Investig. 1969, 48, 1832–1844. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saraff, V.; Nadar, R.; Shaw, N. Neonatal Bone Disorders. Front. Pediatr. 2021, 9, 602552. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wakeling, E.L.; Brioude, F.; Lokulo-Sodipe, O.; O’Connell, S.M.; Salem, J.; Bliek, J.; Canton, A.P.; Chrzanowska, K.H.; Davies, J.H.; Dias, R.P.; et al. Diagnosis and management of Silver-Russell syndrome: First international consensus statement. Nat. Rev. Endocrinol. 2017, 13, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Juriaans, A.F.; Kerkhof, G.F.; Mahabier, E.F.; Sas, T.C.J.; Zwaveling-Soonawala, N.; Touwslager, R.N.H.; Rotteveel, J.; Hokken-Koelega, A.C.S. Temple Syndrome: Clinical Findings, Body Composition and Cognition in 15 Patients. J. Clin. Med. 2022, 11, 6289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borjas Mendoza, P.A.; Daley, S.F.; Mendez, M.D. Beckwith-Wiedemann Syndrome. [Updated 2024 Jan 7]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558993/ (accessed on 29 December 2024).
- Papadopoulou, A.; Bountouvi, E.; Karachaliou, F.E. The Molecular Basis of Calcium and Phosphorus Inherited Metabolic Disorders. Genes 2021, 12, 734. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lacruz, R.S.; Feske, S. Diseases caused by mutations in ORAI1 and STIM1. Ann. N. Y. Acad. Sci. 2015, 1356, 45–79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Justiz Vaillant, A.A.; Mohseni, M. Severe Combined Immunodeficiency. [Updated 2023 Aug 8]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539762/ (accessed on 29 December 2024).
- Harris, E.; Burki, U.; Marini-Bettolo, C.; Neri, M.; Scotton, C.; Hudson, J.; Bertoli, M.; Evangelista, T.; Vroling, B.; Polvikoski, T.; et al. Complex phenotypes associated with STIM1 mutations in both coiled coil and EF-hand domains. Neuromuscul. Disord. 2017, 27, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Borsani, O.; Piga, D.; Costa, S.; Govoni, A.; Magri, F.; Artoni, A.; Cinnante, C.M.; Fagiolari, G.; Ciscato, P.; Moggio, M.; et al. Stormorken Syndrome Caused by a p.R304W STIM1 Mutation: The First Italian Patient and a Review of the Literature. Front. Neurol. 2018, 9, 859. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gamberucci, A.; Nanni, C.; Pierantozzi, E.; Serano, M.; Protasi, F.; Rossi, D.; Sorrentino, V. TAM-associated CASQ1 mutants diminish intracellular Ca2+ content and interfere with regulation of SOCE. J. Muscle Res. Cell Motil. 2024, 45, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Riehle, M.; Büscher, A.K.; Gohlke, B.O.; Kaßmann, M.; Kolatsi-Joannou, M.; Bräsen, J.H.; Nagel, M.; Becker, J.U.; Winyard, P.; Hoyer, P.F.; et al. TRPC6 G757D Loss-of-Function Mutation Associates with FSGS. J. Am. Soc. Nephrol. 2016, 27, 2771–2783. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barker, D.J. The fetal and infant origins of adult disease. BMJ 1990, 301, 1111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anas, M.; Diniz, W.J.S.; Menezes, A.C.B.; Reynolds, L.P.; Caton, J.S.; Dahlen, C.R.; Ward, A.K. Maternal Mineral Nutrition Regulates Fetal Genomic Programming in Cattle: A Review. Metabolites 2023, 13, 593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roseboom, T.J. Epidemiological evidence for the developmental origins of health and disease: Effects of prenatal undernutrition in humans. J. Endocrinol. 2019, 242, T135–T144. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Fall, C.; Egger, P.; Hobbs, R.; Eastell, R.; Barker, D. Growth in infancy and bone mass in later life. Ann. Rheum. Dis. 1997, 56, 17–21. [Google Scholar] [CrossRef]
- Bateson, P.; Barker, D.; Clutton-Brock, T.; Deb, D.; D’Udine, B.; Foley, R.A.; Gluckman, P.; Godfrey, K.; Kirkwood, T.; Lahr, M.M.; et al. Developmental plasticity and human health. Nature 2004, 430, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.K.; Crozier, S.R.; Harvey, N.C.; Gale, C.R.; Dennison, E.M.; Boucher, B.J.; Arden, N.K.; Godfrey, K.M.; Cooper, C.; Princess Anne Hospital Study Group. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: A longitudinal study. Lancet 2006, 367, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Wills, A.K.; Fraser, A.; Sayers, A.; Fraser, W.D.; Tobias, J.H. Association of maternal vitamin D status during pregnancy with bone-mineral content in offspring: A prospective cohort study. Lancet 2013, 381, 2176–2183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ganpule, A.; Yajnik, C.S.; Fall, C.H.; Rao, S.; Fisher, D.J.; Kanade, A.; Cooper, C.; Naik, S.; Joshi, N.; Lubree, H.; et al. Bone mass in Indian children—relationships to maternal nutritional status and diet during pregnancy: The Pune Maternal Nutrition Study. J. Clin. Endocrinol. Metab. 2006, 91, 2994–3001. [Google Scholar] [CrossRef] [PubMed]
- Heppe, D.H.; Medina-Gomez, C.; Hofman, A.; Franco, O.H.; Rivadeneira, F.; Jaddoe, V.W. Maternal first-trimester diet and childhood bone mass: The Generation R Study. Am. J. Clin. Nutr. 2013, 98, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Vaiserman, A.; Lushchak, O. Prenatal famine exposure and adult health outcomes: An epigenetic link. Environ. Epigenet. 2021, 7, dvab013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, C.; Lumey, L.H. Exposure to the Chinese famine of 1959-61 in early life and long-term health conditions: A systematic review and meta-analysis. Int. J. Epidemiol. 2017, 46, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, A.C.; van der Meulen, J.H.; Michels, R.P.; Osmond, C.; Barker, D.J.; Hales, C.N.; Bleker, O.P. Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998, 351, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Waterland, R.A.; Kellermayer, R.; Laritsky, E.; Rayco-Solon, P.; Harris, R.A.; Travisano, M.; Zhang, W.; Torskaya, M.S.; Zhang, J.; Shen, L.; et al. Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 2010, 6, e1001252. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tobi, E.W.; Goeman, J.J.; Monajemi, R.; Gu, H.; Putter, H.; Zhang, Y.; Slieker, R.C.; Stok, A.P.; Thijssen, P.E.; Müller, F.; et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat. Commun. 2014, 5, 5592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dominguez-Salas, P.; Moore, S.E.; Baker, M.S.; Bergen, A.W.; Cox, S.E.; Dyer, R.A.; Fulford, A.J.; Guan, Y.; Laritsky, E.; Silver, M.J.; et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 2014, 5, 3746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harvey, N.C.; Sheppard, A.; Godfrey, K.M.; McLean, C.; Garratt, E.; Ntani, G.; Davies, L.; Murray, R.; Inskip, H.M.; Gluckman, P.D.; et al. Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. J. Bone Miner. Res. 2014, 29, 600–607. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Curtis, E.M.; Murray, R.; Titcombe, P.; Cook, E.; Clarke-Harris, R.; Costello, P.; Garratt, E.; Holbrook, J.D.; Barton, S.; Inskip, H.; et al. Perinatal DNA Methylation at CDKN2A Is Associated with Offspring Bone Mass: Findings from the Southampton Women’s Survey. J. Bone Miner. Res. 2017, 32, 2030–2040. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Godfrey, K.M.; Sheppard, A.; Gluckman, P.D.; Lillycrop, K.A.; Burdge, G.C.; McLean, C.; Rodford, J.; Slater-Jefferies, J.L.; Garratt, E.; Crozier, S.R.; et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 2011, 60, 1528–1534. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moon, R.J.; Curtis, E.M.; Woolford, S.J.; Ashai, S.; Cooper, C.; Harvey, N.C. The importance of maternal pregnancy vitamin D for offspring bone health: Learnings from the MAVIDOS trial. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720X211006979. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moon, R.J.; D’Angelo, S.; Curtis, E.M.; Ward, K.A.; Crozier, S.R.; Schoenmakers, I.; Javaid, M.K.; Bishop, N.J.; Godfrey, K.M.; Cooper, C.; et al. Pregnancy vitamin D supplementation and offspring bone mineral density in childhood follow-up of a randomized controlled trial. Am. J. Clin. Nutr. 2024, 120, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Brustad, N.; Garland, J.; Thorsen, J.; Sevelsted, A.; Krakauer, M.; Vinding, R.K.; Stokholm, J.; Bønnelykke, K.; Bisgaard, H.; Chawes, B.L. Effect of High-Dose vs Standard-Dose Vitamin D Supplementation in Pregnancy on Bone Mineralization in Offspring Until Age 6 Years: A Prespecified Secondary Analysis of a Double-Blinded, Randomized Clinical Trial. JAMA Pediatr. 2020, 174, 419–427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palacios, C.; Kostiuk, L.L.; Cuthbert, A.; Weeks, J. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2024, 7, CD008873. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kerr, B.; Leiva, A.; Farías, M.; Contreras-Duarte, S.; Toledo, F.; Stolzenbach, F.; Silva, L.; Sobrevia, L. Foetoplacental epigenetic changes associated with maternal metabolic dysfunction. Placenta 2018, 69, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Dahlen, C.R.; Borowicz, P.P.; Ward, A.K.; Caton, J.S.; Czernik, M.; Palazzese, L.; Loi, P.; Reynolds, L.P. Programming of Embryonic Development. Int. J. Mol. Sci. 2021, 22, 11668. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fitz-James, M.H.; Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat. Rev. Genet. 2022, 23, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Le Blévec, E.; Muroňová, J.; Ray, P.F.; Arnoult, C. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol. Cell Endocrinol. 2020, 518, 110964. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.I.; Lu, S.; Li, H. Sperm-oocyte interplay: An overview of spermatozoon’s role in oocyte activation and current perspectives in diagnosis and fertility treatment. Cell Biosci. 2021, 11, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ito, S.; Shen, L.; Dai, Q.; Wu, S.C.; Collins, L.B.; Swenberg, J.A.; He, C.; Zhang, Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333, 1300–1303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, W.; Wu, G.; Xiong, F.; Chen, Y. Advances in the DNA methylation hydroxylase TET1. Biomark. Res. 2021, 9, 76. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ross, S.E.; Bogdanovic, O. TET enzymes, DNA demethylation and pluripotency. Biochem. Soc. Trans. 2019, 47, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Bashkenova, N.; Zang, R.; Huang, X.; Wang, J. The roles of TET family proteins in development and stem cells. Development 2020, 147, dev183129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dawlaty, M.M.; Breiling, A.; Le, T.; Barrasa, M.I.; Raddatz, G.; Gao, Q.; Powell, B.E.; Cheng, A.W.; Faull, K.F.; Lyko, F.; et al. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev. Cell. 2014, 29, 102–111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Zhang, Y.; Wang, C.; Wang, X. TET (Ten-eleven translocation) family proteins: Structure, biological functions and applications. Signal Transduct. Target. Ther. 2023, 8, 297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.X.; Xiao, F.H.; Li, Q.G.; Liu, J.; He, Y.H.; Kong, Q.P. Large-scale DNA methylation expression analysis across 12 solid cancers reveals hypermethylation in the calcium-signaling pathway. Oncotarget 2017, 8, 11868–11876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cantone, I.; Fisher, A.G. Epigenetic programming and reprogramming during development. Nat. Struct. Mol. Biol. 2013, 20, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Sendžikaitė, G.; Kelsey, G. The role and mechanisms of DNA methylation in the oocyte. Essays Biochem. 2019, 63, 691–705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burton, A.; Brochard, V.; Galan, C.; Ruiz-Morales, E.R.; Rovira, Q.; Rodriguez-Terrones, D.; Kruse, K.; Le Gras, S.; Udayakumar, V.S.; Chin, H.G.; et al. Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat. Cell Biol. 2020, 22, 767–778. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stein, P.; Savy, V.; Williams, A.M.; Williams, C.J. Modulators of calcium signalling at fertilization. Open Biol. 2020, 10, 200118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ozil, J.P.; Banrezes, B.; Tóth, S.; Pan, H.; Schultz, R.M. Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev. Biol. 2006, 300, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhang, Y.; Su, Y.; Zhou, D.; Xu, Q. Role of store-operated Ca2+ entry in cardiovascular disease. Cell Commun. Signal. 2022, 20, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Masson, B.; Montani, D.; Humbert, M.; Capuano, V.; Antigny, F. Role of Store-Operated Ca2+ Entry in the Pulmonary Vascular Remodeling Occurring in Pulmonary Arterial Hypertension. Biomolecules 2021, 11, 1781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kono, T.; Tong, X.; Taleb, S.; Bone, R.N.; Iida, H.; Lee, C.C.; Sohn, P.; Gilon, P.; Roe, M.W.; Evans-Molina, C. Impaired Store-Operated Calcium Entry and STIM1 Loss Lead to Reduced Insulin Secretion and Increased Endoplasmic Reticulum Stress in the Diabetic β-Cell. Diabetes 2018, 67, 2293–2304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tao, Y.; Yazdizadeh Shotorbani, P.; Inman, D.; Das-Earl, P.; Ma, R. Store-operated Ca2+ entry inhibition ameliorates high glucose and ANG II-induced podocyte apoptosis and mitochondrial damage. Am. J. Physiol. Renal Physiol. 2023, 324, F494–F504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frost, J.M.; Amante, S.M.; Okae, H.; Jones, E.M.; Ashley, B.; Lewis, R.M.; Cleal, J.K.; Caley, M.P.; Arima, T.; Maffucci, T.; et al. Regulation of human trophoblast gene expression by endogenous retroviruses. Nat. Struct. Mol. Biol. 2023, 30, 527–538. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oomen, M.E.; Torres-Padilla, M.E. Jump-starting life: Balancing transposable element co-option and genome integrity in the developing mammalian embryo. EMBO Rep. 2024, 25, 1721–1733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, M.; Hu, X.; Pan, Z.; Du, C.; Jiang, J.; Zheng, W.; Cai, H.; Wang, Y.; Deng, W.; Wang, H.; et al. Endogenous retrovirus-derived enhancers confer the transcriptional regulation of human trophoblast syncytialization. Nucleic Acids Res. 2023, 51, 4745–4759. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, L.; Tu, Z.; Wei, L.; Sun, W.; Wang, Y.; Bi, S.; He, F.; Du, L.; Chen, J.; Kzhyshkowska, J.; et al. Generating Functional Multicellular Organoids from Human Placenta Villi. Adv. Sci. 2023, 10, e2301565. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okae, H.; Toh, H.; Sato, T.; Hiura, H.; Takahashi, S.; Shirane, K.; Kabayama, Y.; Suyama, M.; Sasaki, H.; Arima, T. Derivation of Human Trophoblast Stem Cells. Cell Stem Cell 2018, 22, 50–63.e6. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.V.C.; Pantazi, P.; Holder, B. Circulating extracellular vesicles in healthy and pathological pregnancies: A scoping review of methodology, rigour and results. J. Extracell. Vesicles. 2023, 12, e12377. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aplin, J.D.; Jones, C.J.P. Cell dynamics in human villous trophoblast. Hum. Reprod. Update 2021, 27, 904–922. [Google Scholar] [CrossRef] [PubMed]
ꝉ Time pf. | ꝉꝉ Figure Number | Events | Source of Ca2+ |
---|---|---|---|
0 | 1A | Fertilisation. Sperm releases phospholipase zeta (PLCζ), leading to Ca2+ release and cell division. | Endoplasmic reticulum (ER) stores in oocyte |
Approx. 36 h | Zygote cleaved to two cells. | ꝉꝉꝉ? ER stores | |
Approx. 40 h | 1B | Four-cell stage. | ꝉꝉꝉ? ER stores |
3–4 d | 1C | Morula, a sphere of 12–16 cells enclosed within the ovarian zona pellucida, reaches junction of fallopian tube with uterus. | ꝉꝉꝉ? ER stores |
Approx. 4.5 d | 1D | Cavity in morula (blastocoel) fills with fluid, forming a blastocyst. The outer cells form a spherical wall of trophoblasts and inner cells accumulate at one pole as an inner cell mass, which forms the embryo. | Uterine secretions diffusing into blastocoel |
Approx. 5 d | Start of blastocyst implantation in uterine endometrium induces decidualisation of endometrial glands. | Uterine secretions via blastocoel | |
Approx. 7–8 d | 1E | Blastocyst partially implanted. Inner cell mass now has two layers: epiblast and hypoblast. The amniotic cavity develops in the epiblast, and hypoblast cells extend around the blastocoel, forming the primary yolk sac. The trophoblast wall produces the following: i) a cellular syncytium, which surrounds the blastocyst, invades the endometrium, and contains lacunae and ii) a lining of extra-embryonic mesoderm, which later fuses with the syncytium to form the foetal chorion. | Decidual fluid-? via yolk sac |
Approx. 9 d | 1F | Blastocyst is fully implanted within the endometrium, syncytial lacunae extend into the endometrial stroma, and columns of syncytial villi start to grow towards the basal layer of uterine epithelium (anchoring/stem villi). | Decidual fluid-? via yolk sac |
Approx. 12 d | Syncytial clefts fuse with endometrial glands containing decidual secretion. | Decidual fluid (uterine secretion) histotrophic nutrition | |
By 14 d | Syncytial trophoblasts breach uterine vessels, and blood escapes into the syncytial lacunae. Syncytial columns now anchor the foetal chorion to the basal layer of the uterine epithelium (anchoring/stem villi). Finger-like processes of cytotrophoblasts grow into the syncytium, forming primary villi that surround the blastocyst. Villi then degenerate, except those adjacent to the uterus, which form the chorion frondosum and ultimately the discoid placenta. | Decidual fluid, histotrophic nutrition, and some maternal blood | |
15 d | 1G | Extra-embryonic mesoderm invades the primary villi, converting them to secondary villi, now classed as chorionic villi, and forms a connecting stalk to the embryo, which will become the umbilical cord. The chorionic villi are suspended in spaces of maternal blood. | Decidual fluid, histotrophic nutrition, and some maternal blood |
15–20 d | Foetal capillaries develop in the secondary villi, which then become tertiary villi. | Histotrophic nutrition and some maternal blood | |
10–12 weeks | Maternal circulation to placenta established. | Maternal blood and some histotrophic nutrition | |
By 20 weeks | Figure 2 | Mature placenta formed with free-floating terminal villi—the dominant absorption structures. | Maternal blood |
From 20 weeks | Exponential growth of placenta to term. | Maternal blood |
Disorder [References] | Gene | Protein | Plasma Ca2+ | PTH | Bone Deformity | Birth Weight |
---|---|---|---|---|---|---|
Isolated PTH deficiency [343,344] | PTRH | PTH | ↓ | ↓ | No | Normal? |
Jansen’s metaphyseal chondrodysplasia [345,346,347,348] | PTH1R | PTH/PTHrP receptor | ↑ | ↓ | Yes | ↓ |
Pseudohypoparathyroidism 1A [345,349,350,351] | GNAS from mother | Gsα | ↓ | ↓ | Yes | Normal? |
Pseudo-pseudohypoparathyroidism [345,349,350,351] | GNAS from father | Gsα | Normal | Normal | Yes | Normal? |
I-cell disease [352] | GNPTAB | N-acetylglucosamine phosphotransferase | ↓ or normal | ↑ | Yes | Low |
Severe neonatal hyperparathyroidism [294,301,352] | CaSR inactivating | Calcium sensor receptor | ↑↑ | Not suppressed | Yes | Usually diagnosed postnatally |
Silver–Russell syndrome [267,353] | IGF2 | IGF2 deficiency | Normal | Normal | Yes | Low |
Temple’s syndrome [250,354] | IGF2 | IGF2 deficiency | ꝉ Normal? | Normal? | No | Low |
Beckwith–Wiedemann syndrome [267,355] | IGF2 loss of imprinting | IGF2 excess | Normal? | Normal? | Hemihypertrophy | Increased |
Transient neonatal hyperparathyroidism [155,156,157,158,159] | TRPV6 | Transient potential receptor vanilloid 6 (TRPV6) | ↓ or normal | ↑ | Yes | Normal or low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walker, V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int. J. Mol. Sci. 2025, 26, 383. https://doi.org/10.3390/ijms26010383
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. International Journal of Molecular Sciences. 2025; 26(1):383. https://doi.org/10.3390/ijms26010383
Chicago/Turabian StyleWalker, Valerie. 2025. "The Molecular Biology of Placental Transport of Calcium to the Human Foetus" International Journal of Molecular Sciences 26, no. 1: 383. https://doi.org/10.3390/ijms26010383
APA StyleWalker, V. (2025). The Molecular Biology of Placental Transport of Calcium to the Human Foetus. International Journal of Molecular Sciences, 26(1), 383. https://doi.org/10.3390/ijms26010383