Identification of MicroRNA Profiles in Fetal Spina Bifida: The Role in Pathomechanism and Diagnostic Significance
<p>The amniotic fluid assessment in SB pathogenesis identification. (<b>A</b>) DE miRNAs in amniotic fluid with significantly different expressions between SB (n = 6) and control group (n = 20) (|FC| > 1.5; FDR < 0.05); (<b>B</b>) the network of the top 10 hub genes; (<b>C</b>) gene ontology (GO) enrichment analysis. Top 10 significantly enriched GO (−log10 (<span class="html-italic">p</span>-value)) terms of the target genes in the cellular components, molecular function, and biological processes. KEGG, Kyoto Encyclopedia of Genes and Genomes.</p> "> Figure 2
<p>ROC analysis was constructed to evaluate the diagnostic values of the selected miRNAs as predictive biomarkers of SB (FC > 1.5; FDR < 0.05): (<b>A</b>) miR-1253; (<b>B</b>) miR-1290; (<b>C</b>) miR-194-5p; (<b>D</b>) miR-302d-3p; (<b>E</b>) miR-3144-3p; (<b>F</b>) let-7b-5p; (<b>G</b>) miR-122-5p; (<b>H</b>) miR-23a-3p; (<b>I</b>) miR-30d-5p.</p> "> Figure 3
<p>ROC analysis was constructed to evaluate the diagnostic values of the selected miRNAs in amniotic fluid as predictive biomarkers of SB (FC > 1.5; FDR < 0.05): (<b>A</b>) miR-320e; (<b>B</b>) miR-4536-5p; (<b>C</b>) miR-549aa + miR-548t-3p; (<b>D</b>) miR-548ar-5p; (<b>E</b>) miR-548n; (<b>F</b>) let-590-5p; (<b>G</b>) miR-612; (<b>H</b>) miR-627-5p; (<b>I</b>) miR-644a; (<b>J</b>) miR-873-3p.</p> "> Figure 4
<p>The plasma analysis among SB pathogenesis identifications. (<b>A</b>) The DE miRNAs in plasma with significantly different expressions between SB (n = 6) and control group (n = 20) (FC > 1.5; FDR < 0.05); (<b>B</b>) the networks of the top 10 hub genes targeted by miR-320e; (<b>C</b>) gene ontology (GO) enrichment analysis. Top significantly enriched GO (−log10 (<span class="html-italic">p</span>-value)) categories of the target genes in the cellular components, and biological processes.</p> "> Figure 5
<p>ROC analysis was conducted to evaluate the diagnostic value of miR-320e as diagnostic biomarker of SB vs. control.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Amniotic Fluid
2.2. Maternal Plasma miRNA Profiling
2.3. Logistic Regression Model
3. Discussion
Study Limitations
4. Materials and Methods
4.1. Material Collection
4.2. nCounter miRNA Expression Assay
4.3. Data Analysis
4.4. miRNA Target Prediction and Functional Annotation
4.5. Modeling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phillips, L.A.; Burton, J.M.; Evans, S.H. Spina Bifida Management. Curr. Probl. Pediatr. Adolesc. Health Care 2017, 47, 173–177. [Google Scholar] [CrossRef]
- Adzick, N.S. Prenatal diagnosis and treatment of spina bifida. Preface. Fetal Diagn. Ther. 2015, 37, 165. [Google Scholar] [CrossRef]
- Rocque, B.G.; Hopson, B.D.; Blount, J.P. Caring for the Child with Spina Bifida. Pediatr. Clin. N. Am. 2021, 68, 915–927. [Google Scholar] [CrossRef] [PubMed]
- Guilbaud, L.; Zerah, M.; Jouannic, J.M.; Quarello, E. [The paradoxes of spina bifida in the prenatal period]. Gynecol. Obstet. Fertil. Senol. 2021, 49, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Oakley, G.P.; Erickson, J.D.; James, L.M.; Mulinare, J.; Cordero, J.F. Prevention of folic acid-preventable spina bifida and anencephaly. Ciba Found. Symp. 1994, 181, 212–231. [Google Scholar] [CrossRef] [PubMed]
- Syngelaki, A.; Hammami, A.; Bower, S.; Zidere, V.; Akolekar, R.; Nicolaides, K.H. Diagnosis of fetal non-chromosomal abnormalities on routine ultrasound examination at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2019, 54, 468–476. [Google Scholar] [CrossRef]
- Wilson, R.D. Anomalies fœtales affectant le tube neural : Dépistage / diagnostic prénatal et prise en charge de la grossesse. J. Obstet. Gynaecol. Can. 2016, 38, S496–S511. [Google Scholar] [CrossRef] [PubMed]
- Shookhoff, J.M.; Gallicano, G.I. A new perspective on neural tube defects: Folic acid and microRNA misexpression. Genesis 2010, 48, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Li, H.; Zhang, L.; Luan, H.; Huang, T.; Wang, L.; Fan, Y.; Zhang, Y.; Liu, X.; Wang, W.; et al. Diagnostic role of microRNA expression profile in the serum of pregnant women with fetuses with neural tube defects. J. Neurochem. 2012, 122, 641–649. [Google Scholar] [CrossRef]
- Greene, N.D.E.; Copp, A.J. Could microRNAs be biomarkers for neural tubedefects? J. Neurochem. 2012, 122, 485. [Google Scholar] [CrossRef]
- Scott Adzick, N. Fetal surgery for spina bifida: Past, present, future. Semin. Pediatr. Surg. 2013, 22, 10–17. [Google Scholar] [CrossRef]
- White, M.; Arif-Pardy, J.; Connor, K.L. Identification of novel nutrient-sensitive gene regulatory networks in amniotic fluid from fetuses with spina bifida using miRNA and transcription factor network analysis. medRxiv 2022, 2022. [Google Scholar] [CrossRef]
- Detrait, E.R.; George, T.M.; Etchevers, H.C.; Gilbert, J.R.; Vekemans, M.; Speer, M.C. Human neural tube defects: Developmental biology, epidemiology, and genetics. Neurotoxicol. Teratol. 2005, 27, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Kanchan, R.K.; Perumal, N.; Atri, P.; Chirravuri Venkata, R.; Thapa, I.; Klinkebiel, D.L.; Donson, A.M.; Perry, D.; Punsoni, M.; Talmon, G.A.; et al. MiR-1253 exerts tumor-suppressive effects in medulloblastoma via inhibition of CDK6 and CD276 (B7-H3). Brain Pathol. 2020, 30, 732–745. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Taheri, M.; Samadian, M. A Review on the Role of miR-1290 in Cell Proliferation, Apoptosis and Invasion. Front. Mol. Biosci. 2021, 8, 1250. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.T.; Yang, J.C.; Chang, J.B.; Tsai, S.C. Down-Regulation of miR-194-5p for Predicting Metastasis in Breast Cancer Cells. Int. J. Mol. Sci. 2021, 23, 325. [Google Scholar] [CrossRef]
- Macerola, E.; Poma, A.M.; Proietti, A.; Rago, T.; Romani, R.; Vignali, P.; Ugolini, C.; Torregrossa, L.; Basolo, A.; Santini, F.; et al. Down-regulation of miR-7-5p and miR-548ar-5p predicts malignancy in indeterminate thyroid nodules negative for BRAF and RAS mutations. Endocrine 2022, 76, 677–686. [Google Scholar] [CrossRef]
- Zheng, G.D.; Xu, Z.Y.; Hu, C.; Lv, H.; Xie, H.X.; Huang, T.; Zhang, Y.Q.; Chen, G.P.; Fu, Y.F.; Cheng, X.D. Exosomal miR-590-5p in Serum as a Biomarker for the Diagnosis and Prognosis of Gastric Cancer. Front. Mol. Biosci. 2021, 8, 8. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Zhou, L.; Yin, T.F.; Zhou, Y.C.; Zhou, G.Y.J.; Wang, Q.Q.; Yao, S.K. Circulating miR-627-5p and miR-199a-5p are promising diagnostic biomarkers of colorectal neoplasia. World J. Clin. Cases 2022, 10, 5165. [Google Scholar] [CrossRef]
- Perez-Carbonell, L.; Sinicrope, F.A.; Alberts, S.R.; Oberg, A.L.; Balaguer, F.; Castells, A.; Boland, C.R.; Goel, A. MiR-320e is a novel prognostic biomarker in colorectal cancer. Br. J. Cancer 2015, 113, 83. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.J.; Choo, J.; Heo, G.; Yoo, J.W.; Jung, Y.; Rhee, S.H.; Im, E. miR-23a-3p is a Key Regulator of IL-17C-Induced Tumor Angiogenesis in Colorectal Cancer. Cells 2020, 9, 1363. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yuan, X.; Zheng, L.; Xue, M. miR-30d-5p: A Non-Coding RNA With Potential Diagnostic, Prognostic and Therapeutic Applications. Front. Cell Dev. Biol. 2022, 10, 829435. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.H.; Wan, J.L.; Zeng, L.Y.; Xie, L.; Sun, H.C.; Qin, L.X.; Wang, L.; Zhou, J.; Ren, Z.G.; Li, Y.X.; et al. miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J. Exp. Med. 2013, 210, 789. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Zhang, Y.; Xu, Z.; Jin, M. MicroRNA-122-5p inhibits cell proliferation, migration and invasion by targeting CCNG1 in pancreatic ductal adenocarcinoma. Cancer Cell Int. 2020, 20, 98. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, V.; Ip, R.T.H.; Mohamed, M.A.E.K.; Clarke, P.; Wozniak, E.; Mein, C.; Schwendimann, L.; Barlas, A.; Chisholm, P.; Chakkarapani, E.; et al. Neuronal let-7b-5p acts through the Hippo-YAP pathway in neonatal encephalopathy. Commun. Biol. 2021, 4, 1143. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, R.; Zhu, X.; Li, Y.; Wang, Y.; Xu, W. MicroRNA-23a-3p improves traumatic brain injury through modulating the neurological apoptosis and inflammation response in mice. Cell Cycle 2020, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Tao, Z.; Wang, R.; Liu, P.; Yan, F.; Li, J.; Zhang, C.; Ji, X.; Luo, Y. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res. 2014, 1592, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhao, H.; Liu, J.; Zhang, Y.; Wang, X. miRNA-mRNA Regulatory Network Reveals miRNAs in HCT116 in Response to Folic Acid Deficiency via Regulating Vital Genes of Endoplasmic Reticulum Stress Pathway. BioMed Res. Int. 2021, 2021, 6650181. [Google Scholar] [CrossRef]
- La Rocca, G.; Cavalieri, V. Roles of the Core Components of the Mammalian miRISC in Chromatin Biology. Genes 2022, 13, 414. [Google Scholar] [CrossRef]
- Nawalpuri, B.; Ravindran, S.; Muddashetty, R.S. The Role of Dynamic miRISC During Neuronal Development. Front. Mol. Biosci. 2020, 7, 8. [Google Scholar] [CrossRef]
- Lukaszewicza, A.I.; Anderson, D.J. Cyclin D1 promotes neurogenesis in the developing spinal cord in a cell cycle-independent manner. Proc. Natl. Acad. Sci. USA 2011, 108, 11632–11637. [Google Scholar] [CrossRef] [PubMed]
- Krupp, D.R.; Xu, P.T.; Thomas, S.; Dellinger, A.; Etchevers, H.C.; Vekemans, M.; Gilbert, J.R.; Speer, M.C.; Ashley-Koch, A.E.; Gregory, S.G. Transcriptome profiling of genes involved in neural tube closure during human embryonic development using long serial analysis of gene expression (long-SAGE). Birth Defects Res. Part A Clin. Mol. Teratol. 2012, 94, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Molina, A.; Pituello, F. Playing with the cell cycle to build the spinal cord. Dev. Biol. 2017, 432, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.Y.; Chacko, B.M.; Lam, S.S.; De Caestecker, M.P.; Correia, J.J.; Lin, K. Structural basis of Smad1 activation by receptor kinase phosphorylation. Mol. Cell 2001, 8, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, Z.; Wei, X.; Li, H.; Zhao, G.; Miao, J.; Wu, D.; Liu, B.; Cao, S.; An, D.; et al. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. J. Mater. Sci. Mater. Med. 2016, 27, 77. [Google Scholar] [CrossRef]
- Mitroshina, E.V.; Savyuk, M.O.; Ponimaskin, E.; Vedunova, M.V. Hypoxia-Inducible Factor (HIF) in Ischemic Stroke and Neurodegenerative Disease. Front. Cell Dev. Biol. 2021, 9, 703084. [Google Scholar] [CrossRef]
- Di Gregorio, J.; Cilenti, L.; Ambivero, C.T.; Andl, T.; Liao, R.; Zervos, A.S. UBXN7 cofactor of CRL3KEAP1 and CRL2VHL ubiquitin ligase complexes mediates reciprocal regulation of NRF2 and HIF-1α proteins. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118963. [Google Scholar] [CrossRef] [PubMed]
- Zoungrana, L.I.; Krause-Hauch, M.; Wang, H.; Fatmi, M.K.; Bates, L.; Li, Z.; Kulkarni, P.; Ren, D.; Li, J. The Interaction of mTOR and Nrf2 in Neurogenesis and Its Implication in Neurodegenerative Diseases. Cells 2022, 11, 2048. [Google Scholar] [CrossRef]
- Varderidou-Minasian, S.; Varderidou-Minasian, S.; Verheijen, B.M.; Schätzle, P.; Hoogenraad, C.C.; Pasterkamp, R.J.; Altelaar, M.; Altelaar, M. Deciphering the Proteome Dynamics during Development of Neurons Derived from Induced Pluripotent Stem Cells. J. Proteome Res. 2020, 19, 2391–2403. [Google Scholar] [CrossRef]
- Lawton, A.; Morgan, C.R.; Schreiner, C.G.C.R.; Schreiner, C.G.C.R.; Baumann, J.; Upchurch, B.; Xu, F.; Price, M.S.; Isaacs, G.D. Folate-Dependent Cognitive Impairment Associated With Specific Gene Networks in the Adult Mouse Hippocampus. Front. Nutr. 2020, 7, 574730. [Google Scholar] [CrossRef]
- Guo, X.F.; Wang, X.H.; Fu, Y.L.; Meng, Q.; Huang, B.Y.; Yang, R.; Guo, Y.; Du, Y.R.; Wang, X.; Gao, Y.; et al. Elevation of N-acetyltransferase 10 in hippocampal neurons mediates depression- and anxiety-like behaviors. Brain Res. Bull. 2022, 185, 91–98. [Google Scholar] [CrossRef]
- Sapir, T.; Kshirsagar, A.; Gorelik, A.; Olender, T.; Porat, Z.; Scheffer, I.E.; Goldstein, D.B.; Devinsky, O.; Reiner, O. Heterogeneous nuclear ribonucleoprotein U (HNRNPU) safeguards the developing mouse cortex. Nat. Commun. 2022, 13, 4209. [Google Scholar] [CrossRef]
- Girardi, C.S.; Rostirolla, D.C.; Lini, F.J.M.; Brum, P.O.; Delgado, J.; Ribeiro, C.T.; Teixeira, A.A.; Peixoto, D.O.; Heimfarth, L.; Kunzler, A.; et al. Nuclear RXRα and RXRβ receptors exert distinct and opposite effects on RA-mediated neuroblastoma differentiation. Biochim. Biophys. Acta—Mol. Cell Res. 2019, 1866, 317–328. [Google Scholar] [CrossRef]
- Yu, S.; Levi, L.; Siegel, R.; Noy, N. Retinoic Acid Induces Neurogenesis by Activating Both Retinoic Acid Receptors (RARs) and Peroxisome Proliferator-activated Receptor β/δ (PPARβ/δ). J. Biol. Chem. 2012, 287, 42195. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, Z.; Kumar, A.; Lipinski, M.M.; Loane, D.J.; Stoica, B.A.; Faden, A.I. Endoplasmic Reticulum Stress and Disrupted Neurogenesis in the Brain Are Associated with Cognitive Impairment and Depressive-Like Behavior after Spinal Cord Injury. J. Neurotrauma 2016, 33, 1919. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, L.; Lai, H.; Parada, L.F.; Lei, L. Transcription factor Sox11 is essential for both embryonic and adult neurogenesis. Dev. Dyn. 2013, 242, 638–653. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.; Kitchen, R.; Porteous, D.; Blackwood, D.; Muir, W.; Pickard, B. SOX11 target genes: Implications for neurogenesis and neuropsychiatric illness. Acta Neuropsychiatr. 2012, 24, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E.; Gandellini, P. Unveiling the ups and downs of miR-205 in physiology and cancer: Transcriptional and post-transcriptional mechanisms. Cell Death Dis. 2020, 11, 980. [Google Scholar] [CrossRef] [PubMed]
- Mouillet, J.F.; Chu, T.; Nelson, D.M.; Mishima, T.; Sadovsky, Y. MiR-205 silences MED1 in hypoxic primary human trophoblasts. FASEB J. 2010, 24, 2030. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Finkelstein, D.; Sherr, C.J. Arf tumor suppressor and miR-205 regulate cell adhesion and formation of extraembryonic endoderm from pluripotent stem cells. Proc. Natl. Acad. Sci. USA 2013, 110, E1112–E1121. [Google Scholar] [CrossRef] [PubMed]
- Dasargyri, A.; González Rodríguez, D.; Rehrauer, H.; Reichmann, E.; Biedermann, T.; Moehrlen, U. scRNA-Seq of Cultured Human Amniotic Fluid from Fetuses with Spina Bifida Reveals the Origin and Heterogeneity of the Cellular Content. Cells 2023, 12, 1577. [Google Scholar] [CrossRef] [PubMed]
- Karwowski, W.; Lekesiz, K.; Koc-Żórawska, E.; Wnuczko, K.; Borysewicz-Sanczyk, H.; Naumnik, B. Effects of 17β-estradioland raloxifene on endothelial OPG and RANKL secretion. Ginekol. Pol. 2017, 88, 167–173. [Google Scholar] [CrossRef] [PubMed]
PANEL | TP Rate | FP Rate | Precision | AUC | Intercept | Coefficients |
---|---|---|---|---|---|---|
x1 = miR-205-5p x2 = miR-362-5p | 0.833 | 0.168 | 0.844 | 0.944 | 13.9851 | a1 = −19.2974 a2 = 0.2402 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buczyńska, A.; Sidorkiewicz, I.; Niemira, M.; Krętowski, A.J.; Węgrzyn, P.; Kosiński, P.; Zbucka-Krętowska, M. Identification of MicroRNA Profiles in Fetal Spina Bifida: The Role in Pathomechanism and Diagnostic Significance. Int. J. Mol. Sci. 2024, 25, 2896. https://doi.org/10.3390/ijms25052896
Buczyńska A, Sidorkiewicz I, Niemira M, Krętowski AJ, Węgrzyn P, Kosiński P, Zbucka-Krętowska M. Identification of MicroRNA Profiles in Fetal Spina Bifida: The Role in Pathomechanism and Diagnostic Significance. International Journal of Molecular Sciences. 2024; 25(5):2896. https://doi.org/10.3390/ijms25052896
Chicago/Turabian StyleBuczyńska, Angelika, Iwona Sidorkiewicz, Magdalena Niemira, Adam Jacek Krętowski, Piotr Węgrzyn, Przemysław Kosiński, and Monika Zbucka-Krętowska. 2024. "Identification of MicroRNA Profiles in Fetal Spina Bifida: The Role in Pathomechanism and Diagnostic Significance" International Journal of Molecular Sciences 25, no. 5: 2896. https://doi.org/10.3390/ijms25052896
APA StyleBuczyńska, A., Sidorkiewicz, I., Niemira, M., Krętowski, A. J., Węgrzyn, P., Kosiński, P., & Zbucka-Krętowska, M. (2024). Identification of MicroRNA Profiles in Fetal Spina Bifida: The Role in Pathomechanism and Diagnostic Significance. International Journal of Molecular Sciences, 25(5), 2896. https://doi.org/10.3390/ijms25052896