Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles
<p>Chemical structure of lamivudine employed as ring-opening polymerization initiator.</p> "> Figure 2
<p>Scheme of ring-opening polymerization reaction initiated by lamivudine.</p> "> Figure 3
<p>Mass spectra of LV-initiated ring-opening polymerization product with ionic distributions subset attributed to LV-PCL macromolecular prodrug molecules (marked in red).</p> "> Figure 4
<p>GPC chromatogram of LV-initiated ring-opening polymerization product.</p> "> Figure 5
<p>ITC titration curves reflecting interaction of polyanion HEP with polycations CHIT (<b>A</b>) and PEI (<b>B</b>) in LbL shell assembly conditions.</p> "> Figure 6
<p>ITC titration curves reflecting interaction of LV-PVL particles with polycations CHIT (<b>A</b>) and PEI (<b>B</b>) in LbL shell assembly conditions.</p> "> Figure 7
<p>Changes in particle electrokinetic potential and hydrodynamic diameters during the assembly of (PEI/HEP)<sub>2</sub> shells (<b>A</b>,<b>C</b>) and (CHIT/HEP)<sub>2</sub> shells (<b>B</b>,<b>D</b>) on LV-PCL microparticles. Error bars represent standard deviations calculated from three independent measurements.</p> "> Figure 8
<p>SEM micrographs of LV-PCL microparticles (<b>A</b>) and their modified variants with (CHI/HEP)<sub>2</sub> shells (<b>B</b>) and (PEI/HEP)<sub>2</sub> shells (<b>C</b>).</p> "> Figure 9
<p>Release profiles of lamivudine (LV) from non-modified LV-PCL microparticles (black squares), (CHIT/HEP)<sub>2</sub>-coated LV-PCL cores (blue triangles), and (PEI/HEP)<sub>2</sub>-coated LV-PCL cores (red circles), along with fitted linear functions (dashed lines). The y-axis represents the mass of released LV per mg of microparticles.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Macromolecular Prodrug Synthesis
2.2. Particle–Polycation and Polyanion–Polycation Interactions
2.3. Core-Shell Particle Characterization
2.4. Release Study
3. Materials and Methods
3.1. Materials
3.2. Lamivudine—Poly(ε-caprolactone) Prodrug Synthesis
3.3. Electrospray Time-of-Flight Mass Spectrometry (ESI-ToF MS)
3.4. Gel Permeation Chromatography (GPC)
3.5. Isothermal Titration Calorimetry (ITC)
3.6. Core-Shell Particle Preparation
3.7. Particle Characterization
3.8. Release Study and High-performance Liquid Chromatography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoo, J.; Won, Y.Y. Phenomenology of the Initial Burst Release of Drugs from PLGA Microparticles. ACS Biomater. Sci. Eng. 2020, 6, 6053–6062. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Xie, Q.; Sun, Y. Advances in nanomaterial-based targeted drug delivery systems. Front. Bioeng. Biotechnol. 2023, 11, 1177151. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S. Understanding the Burst Release Phenomenon: Toward Designing Effective Nanoparticulate Drug-Delivery Systems. Ther. Deliv. 2021, 12, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm.-Drug Res. 2010, 67, 217–223. [Google Scholar]
- Mittal, G.; Sahana, D.K.; Bhardwaj, V.; Ravi Kumar, M.N.V. Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J. Control. Release 2007, 119, 77–85. [Google Scholar] [CrossRef]
- Laracuente, M.L.; Yu, M.H.; McHugh, K.J. Zero-order drug delivery: State of the art and future prospects. J. Control. Release 2020, 327, 834–856. [Google Scholar] [CrossRef]
- Subbaiah, M.A.M.; Rautio, J.; Meanwell, N.A. Prodrugs as empowering tools in drug discovery and development: Recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates. Chem. Soc. Rev. 2024, 53, 2099–2210. [Google Scholar] [CrossRef]
- Riber, C.F.; Zelikin, A.N. Recent advances in macromolecular prodrugs. Curr. Opin. Colloid Interface Sci. 2017, 31, 1–9. [Google Scholar] [CrossRef]
- Alkekhia, D.; Hammond, P.T.; Shukla, A. Layer-by-Layer Biomaterials for Drug Delivery. Annu. Rev. Biomed. Eng. 2020, 22, 1–24. [Google Scholar] [CrossRef]
- vander Straeten, A.; Lefèvre, D.; Demoustier-Champagne, S.; Dupont-Gillain, C. Protein-based polyelectrolyte multilayers. Adv. Colloid Interface Sci. 2020, 280, 102161. [Google Scholar] [CrossRef]
- Pavlukhina, S.; Sukhishvili, S. Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv. Drug Deliv. Rev. 2011, 63, 822–836. [Google Scholar] [CrossRef] [PubMed]
- Criado-Gonzalez, M.; Mijangos, C.; Hernández, R. Polyelectrolyte multilayer films based on natural polymers: From fundamentals to Bio-Applications. Polymers 2021, 13, 2254. [Google Scholar] [CrossRef] [PubMed]
- Delshadi, R.; Bahrami, A.; Julian, D.; Moore, M.D.; Williams, L. Development of nanoparticle-delivery systems for antiviral agents: A review. J. Control. Release 2021, 331, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Sawdon, A.J.; Peng, C.A. Polymeric micelles for acyclovir drug delivery. Colloids Surf. B Biointerfaces 2014, 122, 738–745. [Google Scholar] [CrossRef]
- Yin, Q.; Tong, R.; Xu, Y.; Baek, K.; Dobrucki, L.W.; Fan, T.M.; Cheng, J. Drug-initiated ring-opening polymerization of O-carboxyanhydrides for the preparation of anticancer drug-poly(O-carboxyanhydride) nanoconjugates. Biomacromolecules 2013, 14, 920–929. [Google Scholar] [CrossRef]
- Tong, R.; Cheng, J. Drug-Initiated, Controlled Ring-Opening Polymerization for the Synthesis of Polymer—Drug Conjugates. Macromolecules 2012, 45, 2225–2232. [Google Scholar] [CrossRef]
- Munzeiwa, W.A.; Omondi, B.O.; Nyamori, V.O. A Perspective into Ring-Opening Polymerization of ε-Caprolactone and Lactides: Effect of, Ligand, Catalyst Structure and System Dynamics, on Catalytic Activity and Polymer Properties; Springer: Berlin/Heidelberg, Germany, 2024; Volume 81, ISBN 0123456789. [Google Scholar]
- Urbaniak, T.; Musiał, W. Selected Physicochemical and Pharmaceutical Properties of Poly-ε-caprolactone and Poly(d,l-lactide-co-ε-caprolactone) Conjugates of Lamivudine Synthesized via Ring-Opening Polymerization. Polymers 2019, 11, 2124. [Google Scholar] [CrossRef]
- Wesdemiotis, C.; Williams-Pavlantos, K.N.; Keating, A.R.; McGee, A.S.; Bochenek, C. Mass spectrometry of polymers: A tutorial review. Mass Spectrom. Rev. 2024, 43, 427–476. [Google Scholar] [CrossRef]
- Arnould, M.A.; Vargas, R.; Buehner, R.W.; Wesdemiotis, C. Tandem mass spectrometry characteristics of polyester anions and cations formed by electrospray ionization. Eur. J. Mass Spectrom. 2005, 11, 243–256. [Google Scholar] [CrossRef]
- Urbaniak, T.; Musiał, W. Influence of solvent evaporation technique parameters on diameter of submicron lamivudine-poly-ε-caprolactone conjugate particles. Nanomaterials 2019, 9, 1240. [Google Scholar] [CrossRef]
- Atta, S.; Cohen, J.; Kohn, J.; Gormley, A.J. Ring opening polymerization of ϵ-caprolactone through water. Polym. Chem. 2021, 12, 159–164. [Google Scholar] [CrossRef]
- Freyer, M.W.; Lewis, E.A. Isothermal Titration Calorimetry: Experimental Design, Data Analysis, and Probing Macromolecule/Ligand Binding and Kinetic Interactions. Methods Cell Biol. 2008, 84, 79–113. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.; Hwang, B.K. Ionization of PEI and PAA at various pH’s. Bioorg. Chem. 1994, 22, 318–327. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Chen, X.G.; Liu, N.; Wang, S.X.; Liu, C.S.; Meng, X.H.; Liu, C.G. Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydr. Polym. 2006, 65, 194–201. [Google Scholar] [CrossRef]
- Tsaih, M.L.; Chen, R.H. Effect of molecular weight and urea on the conformation of chitosan molecules in dilute solutions. Int. J. Biol. Macromol. 1997, 20, 233–240. [Google Scholar] [CrossRef]
- Korlyukov, A.A.; Stash, A.I.; Romanenko, A.R.; Trzybiński, D.; Woźniak, K.; Vologzhanina, A.V. Ligand-Receptor Interactions of Lamivudine: A View from Charge Density Study and QM/MM Calculations. Biomedicines 2023, 11, 743. [Google Scholar] [CrossRef]
- Phan, H.; Kortsen, K.; Englezou, G.; Couturaud, B.; Nedoma, A.J.; Vincenzo, A.; Pearce, A.K. Functional initiators for the ring-opening polymerization of polyesters and polycarbonates: An overview. J. Polym. Sci. 2020, 58, 1911–1923. [Google Scholar] [CrossRef]
- Urbaniak, T.; Musiał, W. Layer-by-Layer Surface Modification of Alendronate-Loaded Polyester Microparticles—Enabling Protein Immobilization. Polymers 2022, 14, 4943. [Google Scholar] [CrossRef]
- Lundin, M.; Blomberg, E.; Tilton, R.D. Polymer dynamics in layer-by-layer assemblies of chitosan and heparin. Langmuir 2010, 26, 3242–3251. [Google Scholar] [CrossRef]
- Horigome, K.; Ueki, T.; Suzuki, D. Direct visualization of swollen microgels by scanning electron microscopy using ionic liquids. Polym. J. 2016, 48, 273–279. [Google Scholar] [CrossRef]
- Sahana, B. Lamivudine Loaded Carbopol-940 Based Nanoparticles for Controlling Drug Release in Aids Therapy: Development, Physico-Chemical Characterization and In-Vitro Evaluation. Br. J. Med. Health Sci. 2023, 5, 1422–1428. [Google Scholar] [CrossRef]
- Patil, P.; Sharma, A.; Dadarwal, S.; Sharma, V. Development of Solid Lipid Nanoparticles of Lamivudine for Brain Targeting. Int. J. Drug Deliv. Technol. 2009, 1, 36–38. [Google Scholar] [CrossRef]
- Wang, B.; Chen, G.Q.; Mao, Z.W.; Zhang, Y.Y.; Yu, D.H.; Gao, C.Y. Preparation and cellular uptake of PLGA particles loaded with lamivudine. Chin. Sci. Bull. 2012, 57, 3985–3993. [Google Scholar] [CrossRef]
- Deshpande, M.V.; Girase, A. Degradation of Poly(ε-caprolactone) Resorbable Multifilament Yarn under Physiological Conditions. Polymers 2023, 15, 3819. [Google Scholar] [CrossRef]
- Chen, D.R.; Bei, J.Z.; Wang, S.G. Polycaprolactone microparticles and their biodegradation. Polym. Degrad. Stab. 2000, 67, 455–459. [Google Scholar] [CrossRef]
- Lin, X.; Yang, H.; Su, L.; Yang, Z.; Tang, X. Effect of size on the in vitro/in vivo drug release and degradation of exenatide-loaded PLGA microspheres. J. Drug Deliv. Sci. Technol. 2018, 45, 346–356. [Google Scholar] [CrossRef]
- Kharel, S.; Gautam, A.; Dickescheid, A.; Loo, S.C.J. Hollow Microparticles as a Superior Delivery System over Solid Microparticles for the Encapsulation of Peptides. Pharm. Res. 2018, 35, 185. [Google Scholar] [CrossRef]
- Tshweu, L.; Katata, L.; Kalombo, L.; Swai, H. Nanoencapsulation of water-soluble drug, lamivudine, using a double emulsion spray-drying technique for improving HIV treatment. J. Nanoparticle Res. 2013, 15, 2040. [Google Scholar] [CrossRef]
- Gatto, G.J.; Krovi, A.; Li, L.; Massud, I.; Holder, A.; Gary, J.; Mills, P.; Mitchell, J.; Luecke, E.; Demkovich, Z.R.; et al. Comparative Pharmacokinetics and Local Tolerance of Tenofovir Alafenamide (TAF) From Subcutaneous Implant in Rabbits, Dogs, and Macaques. Front. Pharmacol. 2022, 13, 923954. [Google Scholar] [CrossRef]
- Quercia, R.; Perno, C.F.; Koteff, J.; Moore, K.; McCoig, C.; Clair, M.S.; Kuritzkes, D. Twenty-five years of lamivudine: Current and future use for the treatment of HIV-1 infection. JAIDS J. Acquir. Immune Defic. Syndr. 2018, 78, 125–135. [Google Scholar] [CrossRef]
- Massud, I.; Krovi, A.; Nishiura, K.; Ruone, S.; Li, L.; Holder, A.; Gary, J.; Mills, P.; Mitchell, J.; Khalil, G.; et al. Safety and efficacy of a biodegradable implant releasing tenofovir alafenamide for vaginal protection in a macaque model. J. Antimicrob. Chemother. 2022, 77, 2964–2971. [Google Scholar] [CrossRef]
- Cucoveica, O.; Stadoleanu, C.; Bertsch, C.; Triaud, R.; Condriuc, I.P.; Atanase, L.I.; Delaite, C. Colloidal Characteristics of Poly (L-Lactic Acid) -b-Poly Obtained by an Emulsification/Evaporation Method. Polymers 2024, 16, 2748. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbaniak, T.; Milasheuski, Y.; Musiał, W. Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles. Int. J. Mol. Sci. 2024, 25, 12921. https://doi.org/10.3390/ijms252312921
Urbaniak T, Milasheuski Y, Musiał W. Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles. International Journal of Molecular Sciences. 2024; 25(23):12921. https://doi.org/10.3390/ijms252312921
Chicago/Turabian StyleUrbaniak, Tomasz, Yauheni Milasheuski, and Witold Musiał. 2024. "Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles" International Journal of Molecular Sciences 25, no. 23: 12921. https://doi.org/10.3390/ijms252312921
APA StyleUrbaniak, T., Milasheuski, Y., & Musiał, W. (2024). Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles. International Journal of Molecular Sciences, 25(23), 12921. https://doi.org/10.3390/ijms252312921