
Citation: Urbaniak, T.; Milasheuski,

Y.; Musiał, W. Zero-Order Kinetics

Release of Lamivudine from

Layer-by-Layer Coated

Macromolecular Prodrug Particles.

Int. J. Mol. Sci. 2024, 25, 12921.

https://doi.org/10.3390/

ijms252312921

Academic Editor: Kunn Hadinoto

Ong

Received: 30 October 2024

Revised: 21 November 2024

Accepted: 25 November 2024

Published: 1 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer
Coated Macromolecular Prodrug Particles
Tomasz Urbaniak , Yauheni Milasheuski and Witold Musiał *

Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University,
Borowska 211, 50-556 Wrocław, Poland; tomasz.urbaniak@umw.edu.pl (T.U.);
eugeniusz.miloszewski@gmail.com (Y.M.)
* Correspondence: witold.musial@umw.edu.pl

Abstract: To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems
that offer precise control over active ingredient release while minimizing burst effects are considered
advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was
explored through the fabrication of polyelectrolyte-coated microparticles. LV was covalently attached
to poly(ε-caprolactone) via ring-opening polymerization, resulting in a macromolecular prodrug
(LV-PCL) with a hydrolytic release mechanism. The LV-PCL particles were subsequently coated
using the layer-by-layer (LbL) technique, with polyelectrolyte multilayers assembled to potentially
modify the carrier’s properties. The LbL assembly process was comprehensively analyzed, including
assessments of shell thickness, changes in ζ-potential, and thermodynamic properties, to provide
insights into the multilayer structure and interactions. The sustained LV release over 7 weeks was
observed, following zero-order kinetics (R2 > 0.99), indicating a controlled and predictable release
mechanism. Carriers coated with polyethylene imine/heparin and chitosan/heparin tetralayers
exhibited a distinct increase in the release rate after 6 weeks and 10 weeks, respectively, suggesting
that this coating can facilitate the autocatalytic degradation of the polyester microparticles. These
findings indicate the potential of this system for long-term, localized drug delivery applications,
requiring sustained release with minimal burst effects.

Keywords: core-shell microparticles; zero-order release kinetics; layer-by-layer coating; polyelectrolyte
shells; macromolecular prodrugs; ring-opening polymerization; prolonged lamivudine release

1. Introduction

Control over the drug release mode and rate is one of the most critical aspects con-
sidered during the design of drug delivery systems (DDS). Micro- and nanodrug carriers,
due to their large surface area, often exhibit burst release—a phenomenon frequently
observed in drug release studies—which can negatively impact the system’s therapeutic
performance [1]. In the last few decades, targeted drug delivery via colloidal carriers that
accumulate in the tissue of interest has been a widely researched area in pharmaceutical
sciences. Numerous approaches have been proposed to selectively deliver incorporated
drugs, with the most frequently employed methods involving delivery through dedicated
ligands and stimuli-responsive release. Passive targeting strategies, such as cytostatic drug
accumulation through the enhanced permeability and retention effect in tumor-targeted
delivery, are also proposed as promising strategies to reduce unwanted side effects [2].
After systemic administration, most carriers will circulate for some time until passive or
active targeting mechanisms lead to their accumulation in the tissue of interest. There-
fore, a burst release observed in the initial phases of carrier exposure to aqueous media
is particularly unfavorable, as it may significantly decrease the amount of drug delivered
selectively. From a pharmacokinetic perspective, the burst release effect observed in both
traditional drug forms and novel colloidal carriers is highly undesirable for maintaining
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safe and therapeutic serum drug levels [3]. Precise control over the drug release profile is
one of the most crucial requirements for drug carriers, to ensure the safety and efficiency of
the therapeutic process.

The choice of carrier material that exhibits a high affinity to the incorporated drug is
the most basic strategy to slow down the initial release from particulate DDS. Nevertheless,
in virtually all systems where the release is diffusion-driven, the profiles will follow non-
zero-order kinetics, well-described by Higuchi and Korsmeyer-Peppas’ equations [4]. Only
in cases where highly hydrophobic drugs are incorporated into hydrophobic matrices,
such as estradiol in PLGA microparticles, can release profiles that are close to linear be
achieved [5]. For hydrophilic drugs, controlling the release is a more challenging task.
In traditional dosage forms, the approach based on osmotic pumps is the most widely
employed strategy to provide zero-order kinetics. However, for colloidal carriers and
drug-releasing polymeric implantable devices, achieving zero-order kinetics is considered
non-feasible [6].

One of the strategies employed to modify the pharmacokinetic fate of an administered
drug is the use of prodrugs. Prodrugs are dormant complex compounds that undergo
metabolic alterations, leading to the formation of active drug forms. There are multiple
examples of marketed prodrugs that exhibit beneficial features compared to the admin-
istration of the corresponding active substance, such as improved bioavailability (e.g.,
oseltamivir), reduced systemic side effects (e.g., capecitabine), and reduced risk of drug
abuse (e.g., lisdexamfetamine). These favorable properties can be achieved through var-
ious chemical modifications, including esterification, amidation, redox reactions, or the
formation of carbamates or carbonates [7]. The introduction of larger, macromolecular
components into the structure of a bioactive molecule leads to the formation of so-called
drug–polymer conjugates [8]. These conjugates can essentially serve as prodrugs, assuming
that at some point after administration, the free drug molecule is detached from the macro-
molecular construct. Depending on the properties of the macromolecular component, such
materials can be formed into various DDSs, including micro- and nanoparticles, allowing
desired release profiles to be achieved. In traditional oral drug formulations, coatings and
semipermeable membranes are commonly used to modify drug release profiles. However,
applying this approach to micro- and nanoscale drug delivery systems (DDS) is often
challenging. Instead, alternative methods, such as layer-by-layer (LbL) coating, can be
employed to encapsulate micro-objects with polymer shells, thereby potentially altering
the drug release profile from the particle core. Due to the mild coating conditions and
the wide variety of available polyelectrolytes, this versatile method is extensively used in
the biomedical field [9]. Over the past three decades, significant advancements have been
made in understanding the molecular-scale phenomena involved in the assembly of LbL
systems, enabling the correlation of these processes with unique film properties that hold
considerable practical value [10–12].

In this work, we investigated the release profile of lamivudine (LV) from microparticles
formulated from a macromolecular prodrug obtained through ring-opening polymerization.
LV is a nucleoside reverse transcriptase inhibitor used primarily in the treatment of HIV
and hepatitis B infections (Figure 1).
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LV acts by incorporating into the viral DNA during replication, leading to premature
chain termination and inhibition of viral reverse transcriptase. This mechanism effectively
reduces viral replication, helping to control infection and limit disease progression. For HIV,
lifelong therapy is required, and prolonged, controlled delivery of antiviral drugs offers
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significant benefits in improving both the safety and efficacy of treatment [13]. The feasi-
bility of using nucleoside analogues in ring-opening polymerization has been previously
demonstrated, establishing LV as a promising candidate for a prodrug component [14].
Other examples of successful drug conjugation during ring-opening polymerization include
paclitaxel-, doxorubicin-, and docetaxel-based polyester macromolecular prodrugs [15,16].
The fabricated carriers, derived from the synthesized prodrug, were coated with two vari-
ants of layer-by-layer (LbL) shells composed of chitosan (CHIT), polyethyleneimine (PEI),
and heparin (HEP). The potential role of these coatings as diffusion barriers influencing LV
release profiles was investigated.

2. Results and Discussion
2.1. Macromolecular Prodrug Synthesis

According to the proposed mechanism of ε-caprolactone (ε-CL) ring-opening poly-
merization catalyzed by stannous octoate (SO), the catalyst acts as an oxygen-coordinating
Lewis acid, which facilitates a nucleophilic attack of alcohols on the carbonyl carbon of the
monomer. This leads to ring-opening, and the further propagation of polymer through a
repeated attack of the growing chain-end on another one of the monomer molecules. As a
result, alcohol serving as a reaction initiator is covalently bound to the polymer chain via
an ester bond (Figure 2) [17].
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LV is one of the active pharmaceutical ingredients which, due to the presence of a
hydroxyl group, may be applied as a reaction initiator [18]. The prodrug obtained as a
result of the reaction is a mixture of differently sized macromolecules, which are reflected
in the complexity of the mass spectra obtained with ESI-ToF MS (Figure 3).
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In the ESI-ToF MS method, the ionization of analyzed molecules is achieved through
rapid evaporation of the fine droplet mist of the polymer solution. Some of the mixture
constituents, mainly those of heavier chains, may experience ion suppression due to poor
solubility, which restricts their transfer from the droplet to gas phase [19]. Additionally,
the high molecular weight of the analyzed macromolecules may result in the formation
of multiply charged ions, significantly increasing the number of isotopic distributions
present in the spectra [20]. Those factors limit the amount of possible information which
can be derived from the obtained data. In the presented spectra, the analysis of isotopic
distributions revealed the presence of an ionic distributions set, which can be described
by the general formula of C(8+(n×6)H(11+(n×10)O(3+(n×2))N3S1 (Figure 3, marked in red).
This formula represents the LV molecule coupled with n PCL monomer units, where n
ranges from 2 to 19, as depicted in Figure 2, as the product of the reaction. The average
matching error was 0.0039 ± 0.0016 Da. The high intensity of this isotopic distribution set
indicates that LV-PCL was the main component of ions obtained through the ESI of the
polymerization product solution. A more comprehensive spectral analysis of an analogous
prodrug obtained under different reaction conditions was described in a previous study
by our group [21]. The bimodal intensity distribution of these isotopic patterns in the
mass spectra suggests the presence of two main, overlapping chain subpopulations of
conjugates. This observation did not correspond to the GPC chromatogram of LV-PCL,
where a symmetrical peak, derived from the polymer, was observed at an elution time of
8.5 min (Figure 4).
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Figure 4. GPC chromatogram of LV-initiated ring-opening polymerization product.

The numbers comprising the average molecular weight (Mn) and weight average
molecular weight (Mw), derived from the chromatogram, were equal, being 2753 Da
and 4291 Da, respectively, with a molecular weight polydispersity (Mw/Mn) of 1.56. The
theoretical, expected molecular weight of the reaction product calculated from the monomer
to initiator molar ratio was 7133 Da. The difference between the expected and experimental
molecular weights suggests that part of the monomer was not converted during the applied
reaction time, or that some side reactions initiated by water vapors occurred [22].

2.2. Particle–Polycation and Polyanion–Polycation Interactions

ITC was used to measure the heat associated with the interactions between polyelec-
trolytes during shell assembly, as well as the heat related to the adsorption of polycations
onto LV-PCL cores. Due to the macromolecular nature of the substances investigated, an



Int. J. Mol. Sci. 2024, 25, 12921 5 of 13

accurate determination of their molar concentrations—which is necessary for calculating
thermodynamic parameters—was not feasible [23]. However, mathematical models—fitted
to the experimental data—enabled determination of the binding mass ratios, in which these
macromolecules interacted under shell assembly conditions (Figure 5).
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Figure 5. ITC titration curves reflecting interaction of polyanion HEP with polycations CHIT (A) and
PEI (B) in LbL shell assembly conditions.

For both CHIT-HEP and PEI-HEP interactions occurring in PBS at pH 4.5 and 7.4,
respectively, heat release was observed during titration. The exothermic responses indicate
negative enthalpy, which reflects the spontaneous ionic interactions between the amine
groups of the polycations and the carboxyl and sulfonate groups of the HEP. The heat
released during PEI-HEP titration was significantly higher than CHIT-HEP titration, at-
tributed to the higher ionic charge density of PEI and its pKa value of ~7, compared to
a pKa of 6.45 for CHIT [24,25]. The pH of 4.5 used during CHIT-HEP assembly favored
the ionization of CHIT, which is a weak base. However, this pH is close to the 3.3 pKa of
HEP’s carboxyl groups, limiting its ionization and thus potentially reducing the strength
of the interaction. For the polycation, the HEP-binding mass ratio also differed between
the two systems, with 0.78 for CHIT and 0.26 for PEI, likely due to the lower charge den-
sity in CHIT molecules. Additionally, the high molecular weight of CHIT may lead to a
coiled conformation, limiting interactions primarily to externally charged groups, which
is consistent with the greater thickness of the CHIT/HEP multilayers observed in DLS
experiments [26]. Similar observations were made when LV-PCL cores were titrated with
polycation solutions under shell assembly conditions (Figure 6).
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The surface charge of polyester particles in aqueous suspension depends on the
polymer chain’s chemical composition and terminal groups, which can be controlled
during polymerization. The slight negative charge of LV-PCL particles likely arises from
free hydroxyl and carboxyl groups on hydrolyzed PCL chains, as well as carbonyl oxygens
in ester groups and LV moieties acting as hydrogen bond acceptors [27,28]. Consequently,
the interaction between the core surface and polycationic macromolecules such as CHIT
and PEI resulted in exothermic effects of a comparable magnitude to those observed with
HEP. The quantity of polycation adsorbed as the initial layer per mg of core material was
0.072 mg for PEI and 0.065 mg for CHIT. This suggests a strong adsorption of a thin PEI
layer, mediated by multiple interaction sites per macromolecule, and a thicker, more loosely
bound layer of CHIT in a coiled conformation. These findings align with the DLS data,
which showed changes in the hydrodynamic diameter during shell assembly.

2.3. Core-Shell Particle Characterization

Due to the absence of a drug incorporation step during the preparation of LV-PCL
particles, core fabrication via the ESE method is straightforward. Covalent drug-binding to
the polymer chain in the macromolecular prodrug ensures uniform drug distribution within
the polymer matrix, with drug content determined by the molecular weight of LV-PCL. The
resulting microparticles served as cores for CHIT/HEP and PEI/HEP multilayer assembly.
The properties of the cores and shell formation were investigated through ζ-potential and
Hd measurements conducted at each step of the polyelectrolyte multilayer deposition
(Figure 7).
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Alternating changes in ζ-potential, observed in both shell variants after the deposition
of each polycation and polyanion layer, confirmed the adsorption of charged polymers
on the particle surface (Figure 7A,B). The intensity of electrokinetic potential fluctuations
was comparable to those observed during the polyelectrolyte multilayer deposition on
PCL cores fabricated via the double emulsion solvent evaporation method [29]. The more
pronounced negative ζ-potential during the PEI/HEP multilayer deposition, and the
high positive values in the CHIT/HEP system, occurred primarily due to the different
pHs applied during the deposition. In both coating variants, coated particles exhibited
a significantly larger Hd compared to uncoated cores (p < 0.001, Student’s t-test), with
an approximate shell thicknesses of 490 nm for PEI/HEP tetralayers and 797 nm for
CHIT/HEP tetralayers. The greater thickness of the CHIT-based shell is likely due to its
higher molecular weight of 200 kDa compared to the 25 kDa for employed PEI. Variations in
Hd during both shell assembly processes, particularly with CHIT/HEP, indicate a dynamic
nature of the process, involving concurrent adsorption and desorption [30]. The observed
decrease in the hydrodynamic diameter PDI after the deposition of each successive layer is
likely attributed to the increase in the absolute value of the ζ-potential, with a statistically
significant difference observed between uncoated cores and tetralayer-coated particles
(p < 0.01, Student’s t-test). The surface charge induced repulsive forces, leading to reduced
aggregation and stabilization of colloidal suspension. The SEM visualization of all particle
variants did not reveal substantial differences in the size of coated particles (Figure 8B,C),
in comparison to cores (Figure 8A).
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Figure 8. SEM micrographs of LV-PCL microparticles (A) and their modified variants with
(CHI/HEP)2 shells (B) and (PEI/HEP)2 shells (C).

This is most probably due to the dehydrated state of shells in vacuum conditions,
which largely differ from the native, swollen state, under the aqueous conditions in which
Hds were measured [31]. Nonetheless, LV-PCL cores exhibited a more developed surface
structure, with visible irregularities, in contrast to the smoother surface of CHIT/HEP- and
PEI/HEP-coated particles.
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2.4. Release Study

Due to the high water solubility of LV, particulate systems designed for its delivery
typically release the incorporated drug within hours, depending on the carrier type and
formulation parameters. Most reported systems, including polyester-based nanoparticles,
exhibit a well-defined burst release or bimodal release profiles [32–34]. In contrast, the use
of an LV-PCL macromolecular prodrug resulted in a release profile that followed zero-order
kinetics, as indicated by R2 values > 0.99 for linear functions fitted to data for 91 days in
the case of uncoated cores, 71 for CHIT/HEP variant, and 42 days for the PEI/HEP variant
(Figure 9).
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(red circles), along with fitted linear functions (dashed lines). The y-axis represents the mass of
released LV per mg of microparticles.

The lack of burst release confirms that the entire incorporated dosage of LV was
covalently bound to PCL chains, with no free drug present as an impurity after the synthesis
process. A minor initial release of LV, ranging from 0.15 to 0.25 µg/mL, was observed on
the first day of the experiment in all investigated variants, presumably due to the hydrolytic
detachment of LV molecules present on the particle surface. Due to its hydrophobicity and
high crystallinity, PCL is known for its slow degradation rate, with resorption of PCL-based
implantable devices occurring after 2 to 3 years [35]. In the case of PCL-based particles, the
higher surface area facilitates hydrolysis, accelerating the degradation rate and causing
significant changes in polymer properties within weeks after exposure to physiological-like
conditions [36]. Tracing the LV detachment from low molecular weight LV-PCL conjugates
offers a unique method for tracking particle degradation, confirming ester bond cleavage
from the first hours after particle exposure to aqueous media. For 42 days of exposition to
release media, the linear release profile in all particle variants indicates a surface erosion
mechanism of degradation, without signs of autocatalyzed degradation from accumulated
acidic degradants within the particles. The linear stage release rate constants of 0.0311,
0.0316, and 0.0291 for CHIT/HEP, PEI/HEP, and uncoated cores, respectively, show a
slightly faster release rate from coated particles. However, the differences between the
fitted functions were not statistically significant, as indicated by ANOVA/Tukey tests,
with the lowest p-value of 0.68 for the comparison between uncoated cores and particles
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with PEI/HEP tetralayers. This suggests that the investigated LbL shells did not act as
an efficient diffusion barrier for drug release. The slight differences in release rate may
be attributed to the colloid-stabilizing effect of LbL coatings, which prevented particle
aggregation and, consequently, a reduction in release surface area.

For PEI/HEP-coated particles, a distinct release behavior was observed, characterized
by a notable increase in the release rate after day 42 of the experiment. A similar increase
in release rate and deviation from the linear release regime was observed for CHIT/HEP-
coated particles after day 70 of the release experiment. The resulting bimodal release
profiles are consistent with previously documented autocatalytic degradation patterns in
polyester particles, where the accelerated release is correlated with a measured decrease
in molecular weight [37,38]. The polyelectrolyte layers may have facilitated enhanced
prodrug degradation within the particles, potentially catalyzed by the accumulation of
acidic degradation products, leading to a delayed increase in the drug release rate during
the later stages of the experiment. The notable differences in the time points at which
changes in the release regime occurred highlight the influence of the polycation type
on this phenomenon. Overall, the obtained release profiles differed significantly from
those observed in systems where LV was incorporated into polyester microparticles via
traditional approaches [39].

The long-term release of small LV doses from the investigated system suggests its
potential application in local, prophylactic delivery of antiretroviral drugs, such as in the
prevention of HIV infection [40]. Low doses of slowly released LV are sufficient to provide
a local antiviral effect, which is observed at nanomolar concentrations, without the risk of
systemic side effects [41]. This underscores the potential use of the described system as a
component embedded in intraurethral implantable devices [42].

3. Materials and Methods
3.1. Materials

The following chemicals and materials were used in this study: ε-caprolactone (pu-
rity 97%, Sigma Aldrich, Darmstadt, Germany), lamivudine (secondary pharmaceutical
standard, purity 100%, Sigma Aldrich, Darmstadt, Germany), tin 2-ethylhexanoate (pu-
rity of 92.5 to 100% Sigma Aldrich, Darmstadt, Germany), poly(vinyl alcohol) (31 kDa,
degree of hydrolysis, 86.7 to 88.7%, Roth, Zielona Góra, Poland), dichloromethane (pu-
rity 98.5%, Chempur, Piekary Śląskie, Poland), tetrahydrofuran (purity 99.8%, Chempur,
Piekary Śląskie, Poland), methanol (purity 99.9%, Chempur, Piekary Śląskie, Poland), chlo-
roform (purity 99.9%, Chempur, Piekary Śląskie, Poland), ammonium acetate (purity of
97 to 100%, Chempur, Piekary Śląskie, Poland), glacial acetic acid (purity 99.5%, Chempur,
Piekary Śląskie, Poland), GPC polystyrene standards (analytical standard grade, Sigma
Aldrich, Darmstadt, Germany), phosphate saline buffer (0.01 M phosphate buffer, 0.0027 M
potassium chloride and 0.137 M sodium chloride, pH 7.4, purity 99.9%, Sigma Aldrich,
Darmstadt, Germany), chitosan (Mw~200.000, degree of deacetylation ≥90%, Pol-Aura,
Olsztyn, Poland), polyethyleneimine branched (Mw~25.000, Sigma Aldrich), and heparin
sodium salt (≥180 IU/mg, Pol-Aura, Olsztyn, Poland).

3.2. Lamivudine—Poly(ε-caprolactone) Prodrug Synthesis

LV-initiated ring-opening polymerization of ε-CL was conducted in bulk, according
to a previously reported protocol. ε-CL and LV were preheated to 100 ◦C under a dry
nitrogen atmosphere, in a round bottom flask equipped with a magnetic stirrer and reflux
condenser. Subsequently, the SO serving, as the reaction catalyst, was introduced to the
reaction vessel and polymerization was carried out for 5 h. The ε-CL:LV:SO reactant molar
ratio was 1:0.016:0.0023. The obtained crude product was dissolved in dichloromethane,
precipitated with cold methanol, dried and stored under vacuum.
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3.3. Electrospray Time-of-Flight Mass Spectrometry (ESI-ToF MS)

The mass spectra of the synthesized macromolecular prodrug were obtained using
a micrOTOF-Q mass spectrometer (Bruker Daltonics, Bremen, Germany). The sample,
dissolved in chloroform, was ionized through electrospraying. Spectra were collected
in positive ionization mode with the following settings: a capillary voltage of 3500 V, a
nebulizer pressure of 1.5 bar, a dry gas flow rate of 8 L/min, and a dry temperature of
180 ◦C. The obtained data were processed using the Compass DataAnalysis 4.2 software
package (Bruker, Bremen, Germany).

3.4. Gel Permeation Chromatography (GPC)

GPC chromatograms were obtained using a Dionex Ultimate 3000 HPLC system
(Thermo Scientific, Waltham, MA, USA), equipped with a Phenogel 103 Å column (Phe-
nomenex, Torrance, CA, USA) and a refractive index detector. Chromatographic separation
was performed at room temperature, with tetrahydrofuran as the mobile phase, with
1 mL/min flow. The molecular weight of the synthesized product was calculated based
on a linear polystyrene standard calibration curve consisting of eleven points in the 1 to
96 kDa molecular weight range.

3.5. Isothermal Titration Calorimetry (ITC)

Interactions between polyelectrolytes under conditions mimicking LbL shell assembly
were investigated using a Nano ITC calorimeter (TA Instruments, New Castle, DE, USA).
For the polyelectrolyte interaction analysis, 0.6 mg/mL HEP solutions in PBS at pH 7.4
and 4.5 were titrated with 3.0 mg/mL PEI and 3.0 mg/mL CHIT solutions, respectively.
In experiments evaluating polycation adsorption on the particle surface, 5 mg/mL parti-
cle suspension was titrated with the same solutions as in the polyelectrolyte interaction
experiments. In each experiment, the analyte volume was 1.0 mL, and the titrant volume
was 0.25 mL. A total of 109 injections, each 2.85 µL, were introduced at 180-s intervals.
The titrations were carried out at 25 ◦C with a stirring rate of 300 rpm. The experimental
data were fitted to a one-binding site model using the NanoAnalyze software (v. 3.1.2, TA
Instruments, New Castle, DE, USA).

3.6. Core-Shell Particle Preparation

Particle cores were formulated using the emulsion solvent evaporation (ESE) method.
An o/w emulsion, composed of a 20 mg/mL prodrug solution in dichloromethane and
a 0.5% w/v aqueous polyvinyl alcohol solution, was prepared using a high-speed rotor-
stator homogenizer (Ingenieurbüro CAT, Ballrechten-Dottingen, Germany), operating at
17,000 rpm for 10 min. The oil phase of the emulsion was then evaporated using a rotary
evaporator at 30 ◦C under a 90 kPa vacuum for 25 min. The resulting solid prodrug particles
were centrifuged for 10 min at 4227 rcf and washed twice with deionized water [43]. The
LbL dip-coating procedure was conducted using 1.0 mg/mL solutions of CHIT, HEP, and
PEI in PBS, with pH 7.4 for the PEI/HEP and pH 4.5 for the CHIT/HEP layers. For
each assembly type, 10 mL of a 3 mg/mL core suspension in the appropriate PBS was
prepared, and the polyelectrolyte solution was added to achieve the final polyelectrolyte
concentration. Each 10 min deposition step was conducted on a rotary shaker, followed by
10 min of centrifugation at 3074 rcf and a 5 min rinsing step in PBS. Alternate deposition of
polyelectrolytes continued until (PEI/HEP)2 and (CHIT/HEP)2 tetralayers were formed.

3.7. Particle Characterization

DLS measurements were performed on a Zetasizer Nano apparatus (Malvern, Worces-
tershire, UK) to confirm the deposition of each polyelectrolyte layer during shell assembly.
The zeta-potential (ζ potential) and hydrodynamic diameters (Hd) were measured in PBS
with a pH of 7.4 for PEI/HEP shells and PBS with a pH of 4.5 for CHIT/HEP shells.
ζ-potential measurements were conducted in polycarbonate folded capillary cells with
embedded gold-plated copper electrodes, while Hd measurements were performed in
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polystyrene cuvettes. Each sample was measured in triplicate, and the values were ex-
pressed as mean ± SD. The statistical significance of differences between the selected
PDI and Hd values was evaluated using the Student’s t-test. Particle morphology was
visualized using a scanning electron microscopy (SEM) on a Phenom Pro scanning electron
microscope (Thermo Scientific, Waltham, MA, USA) at 15,000× magnification, utilizing
10 kV acceleration voltage in the secondary electron detection mode. Prior to visualization,
particles were sputter-coated with a 5 nm thick gold layer.

3.8. Release Study and High-performance Liquid Chromatography

An LV release from three variants of the obtained particles was conducted in PBS (pH
7.4). The particles were resuspended in the release medium at a concentration of 1 mg/mL
and incubated at 37 ◦C on an orbital shaker set to 200 rpm for 91 days. At selected time
points, 0.5 mL samples of the particle suspension were centrifuged for 10 min at 3348 rcf,
and 0.2 mL aliquots of the supernatants were collected and stored in a freezer until further
analysis. The volume of collected samples was replenished to 0.5 mL, and the remaining
particles were resuspended and transferred back to the release vessels. The concentrations
of LV in the samples were measured using the pharmacopoeial high-performance liquid
chromatography (HPLC) method. The analysis was performed on a Hitachi Primaide HPLC
system (Hitachi HTA, Schaumburg, IL, USA) equipped with a Primaide 1410 UV detector
and a Purospher STAR RP-18 column (5 µm; 250 × 4.6 mm) (Merck Millipore, Burlington,
MA, USA). The mobile phase consisted of 0.025 M ammonium acetate solution, with the
pH adjusted to 3.8 ± 0.2 using acetic acid and methanol in a ratio of 95:5. Chromatographic
separation was carried out at 35 ◦C with a 1 mL/min flow rate, and detection was performed
at a wavelength of 277 nm. LV concentrations were calculated based on a linear calibration
curve constructed from 7 concentrations, ranging from 0.775 to 49.6 µg/mL, with an
R2 > 0.999. Zero-order kinetic models were fitted to the experimental data and statistically
compared using the least squares method, ANOVA, and Tukey tests in Statistica software
(TIBCO Software Inc., Palo Alto, CA, USA).

4. Conclusions

The results of this study demonstrate that the design of macromolecular lamivudine
prodrug microparticles, combined with LbL polyelectrolyte coatings, offers a promising
strategy for achieving prolonged and controlled drug release. The covalent attachment of
lamivudine to PCL chains (4291 Da) ensured a stable and predictable release profile that
closely followed zero-order kinetics for 42, 70, and 91 days for PEI/HEP, CHIT/HEP, and
uncoated particles, respectively. This confirms that the entire drug load was covalently in-
tegrated into the polymer matrix, effectively avoiding the significant burst release typically
observed with free drug-loaded particulate systems. Although the role of LbL coatings as
diffusion barriers was not conclusively established, the results suggest that these coatings
contributed to the colloidal stability of the particles, as evidenced by the high ζ-potential
values. Additionally, the bimodal release observed in coated particles suggests that the
presence of LbL shells may promote autocatalytic degradation of the prodrug within the
particles. The steady release of 0.03 µg of lamivudine per milligram of uncoated cores per
day can be modified through the incorporation of optimized LbL coatings. This study also
highlights the utility of ITC in investigating the thermodynamics of polyelectrolyte assem-
bly, revealing the electrostatic nature of interactions characterized by negative enthalpy
and the mass ratios of polyelectrolytes involved in LbL shell formation. The prolonged,
steady release of lamivudine underscores the potential of these systems for localized drug
delivery, particularly in applications requiring the extended release of controlled drug
concentrations, such as the prophylactic treatment of chronic viral infections.
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