Effect of Oxidative Stress on Mitochondrial Damage and Repair in Heart Disease and Ischemic Events
<p>Methods related to platelet analysis (LVADs, T-Tas, nicking assay, and oxygen consumption assay) (own driving).</p> "> Figure 2
<p>Principle of mitochondria dysfunction (own driving) and analyzed by methods of nicking assay and oxygen consumption assay [<a href="#B77-ijms-25-12467" class="html-bibr">77</a>,<a href="#B78-ijms-25-12467" class="html-bibr">78</a>].</p> "> Figure 3
<p>Proposed scheme of carcinogenic factors leading to oxidative stress-induced reactive oxygen species (ROS) and nitrogen (RNS) species; these can trigger lipid peroxidation that yields dialdehydes and alkenals, which cause exocyclic DNA base damage. PUFA, polyunsaturated fatty acid; iNOS, inducible nitric oxide synthase [<a href="#B135-ijms-25-12467" class="html-bibr">135</a>].</p> "> Figure 4
<p>Major pathways for formation of exocyclic propano and etheno DNA adducts resulting from lipid peroxidation products and environmental mutagens/carcinogens [<a href="#B143-ijms-25-12467" class="html-bibr">143</a>] with modifications.</p> "> Figure 5
<p>Oxidative changes inside the mitochondria of blood platelets. <a href="https://biologydictionary.net/mitochondria/" target="_blank">https://biologydictionary.net/mitochondria/</a>, accessed on 1 January 2020 with own modifications.</p> ">
Abstract
:1. Introduction
2. Platelet Mitochondria Biogenesis
2.1. Genotoxic Properties of Endogenous Mitochondrial DNA Damage in Platelets
2.2. Disturbance of Mitochondrial Function in Platelets
2.3. Platelet Mitochondrial Metabolism Alterations
3. Formation of Exocyclic Base Adducts in Platelet Mitochondrial DNA Under the Influence of Free Radicals Inducing Oxidative Stress and Lipid Peroxidation
4. The Effect of Molecular Oxygen on Platelet Mitochondria as a New Marker of Oxidative Stress Measured by the Oxygen Consumption Assay Method
5. Factors Inducing Excessive ROS Production in Cardiomyocytes as a Result of Platelet Mitochondrial Dysfunction
6. Fatty Acid Oxidation During Diabetes Disrupts the Energy Management of Platelet Mitochondria
7. The Influence of ROS-Induced Mitochondrial Dysfunction on Cardiovascular Damage
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ROS | Reactive oxygen species |
RNS | Reactive nitrogen species |
mtDNA | Mitochondrial DNA |
HF | Heart failure |
MCS | Mechanical circulatory support |
BTT | Bridge to heart transplantation |
DT | Destination therapy |
CF-LVAD | Mechanical circulatory support using implantable, durable, continuous-flow left ventricular assist device |
INTERMACS | Interagency Registry for Mechanically Assisted Circulatory Support |
NSB | Normotonic saline bolus group |
GPIbα | Platelet receptor glycoprotein Ibα (GpIbα) |
GPVI | Platelet receptor GPVI (glycoprotein VI) |
GPIIbIIIa | Platelet glycoprotein IIb/IIIa receptors |
MCV | Mean corpuscular volume |
MCH | Mean corpuscular hemoglobin |
MCHC | Mean corpuscular hemoglobin concentration |
MPV | Mean platelet volume |
PDW | Platel distribution width |
Pct | Platelet hematocrit or thrombocrit parameter |
GPCRs | G protein-coupled receptors |
G protein | Guanine nucleotide-binding proteins |
CVD | Coronary heart disease |
MPT | Mitochondrial permeability transition |
ADP | Adenosine diphosphate |
P2Y1 | Purinergic receptor |
P2Y12 | Oral platelet inhibitors |
P2X1 | Purinergic receptor |
CypD | Cyclophilin D |
Msrb2 | Methionine sulfoxide reductase type 2 |
ΔΨ m | Mitochondrial membrane potential |
(εA) | 1,N6-ethenoadenine |
(εC) | 3,N4-ethenocytosine |
(εG) | N2,3-ethenoguanine or 1,N2-ethenoguanine |
ACS | Acute coronary syndrome |
PCI | Percutaneous coronary intervention |
ADP | Adenosine diphosphate |
AMI | Acute myocardial infarction |
(8-oxo-dGTP) | 8-oxo-2′-deoxyguanosine-5′-triphosphate, |
(8-oxo-dATP) | 8-oxo-2′-deoxyadenosine-5′-triphosphate |
(2-OH-dATP) | 2-hydroxy-2′-deoxyadenosine-5′-triphosphate |
(2-OH-ATP) | 2-hydroxyadenosine-5′-triphosphate |
M1-dG | Malondialdehyde-derived deoxyguanosine |
(PdG) | 1,N2-Propanodeoxyguanine |
T-TAS | (Total Thrombus formation Analysis System) is an automated microchip flow chamber system for the quantitative analysis of the thrombus formation |
MT-ND1, MT-ND5, MT-ND6 | Genes responsible for the production of NADH phosphate (NADPH)-trans-hydrogenase |
NADH | NADH phosphate |
TLR1, TLR2 and TLR4 | Receptor-mediated activation, mediates both pro- and anti-inflammatory responses |
iNOS | Inducible nitric oxide synthase |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
c-Jun | Nuclear transcription factor |
COX-2 | Cyclooxygenase-2 |
PI3K | Phosphoinositide 3-kinase |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
PKC | Protein kinase C |
CoA | Coenzyme A |
References
- WHO Fact Sheet. Available online: http://www.who.int/mediacentre/factsheets/fs310/en/ (accessed on 15 May 2013).
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart Disease and Stroke Statistics–2013 Update: A Report From the American Heart Association. Circulation 2013, 127, e6–e245. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 62, e147–e239. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.; Bush, N. Heart Failure: Pathophysiology, Diagnosis, Medical Treatment Guidelines, and Nursing Management. Nurs. Clin. N. Am. 2015, 50, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Tomasoni, D.; Adamo, M.; Lombardi, C.M.; Metra, M. Highlights in heart failure. ESC Heart Fail. 2019, 6, 1105–1127. [Google Scholar] [CrossRef]
- Chaudhry, M.A. Heart Failure. Curr. Hypertens. Rev. 2019, 15, 7. [Google Scholar] [CrossRef]
- Snipelisky, D.; Chaudhry, S.P.; Stewart, G.C. The Many Faces of Heart Failure. Card. Electrophysiol. Clin. 2019, 11, 11–20. [Google Scholar] [CrossRef]
- Wilcox, J.E.; Fang, J.C.; Margulies, K.B.; Mann, D.L. Heart Failure With Recovered Left Ventricular Ejection Fraction: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 2020, 76, 719–734. [Google Scholar] [CrossRef]
- Melmed, K.R.; Schlick, K.H.; Rinsky, B.; Dumitrascu, O.M.; Volod, O.; Nezhad, M.; Padrick, M.M.; Runyan, C.; Arabia, F.A.; Moriguchi, J.D.; et al. Assessing Cerebrovascular Hemodynamics Using Transcranial Doppler in Patients with Mechanical Circulatory Support Devices. J. Neuroimaging 2020, 30, 297–302. [Google Scholar] [CrossRef]
- Shimada, S.; Nawata, K.; Kinoshita, O.; Ono, M. Mechanical circulatory support for the right ventricle in combination with a left ventricular assist device. Expert. Rev. Med. Devices 2019, 16, 663–673. [Google Scholar] [CrossRef]
- Allen, W.B.L. ECMO as a Destination Therapy is Not a Bridge to Nowhere. Am. J. Bioeth. 2023, 23, 57–59. [Google Scholar] [CrossRef]
- Tunuguntla, H.; Conway, J.; Villa, C.; Rapoport, A.; Jeewa, A. Destination-Therapy Ventricular Assist Device in Children: “The Future Is Now”. Can. J. Cardiol. 2020, 36, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Hanff, T.C.; Birati, E.Y. Left Ventricular Assist Device as Destination Therapy: A State of the Science and Art of Long-Term Mechanical Circulatory Support. Curr. Heart Fail. Rep. 2019, 16, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Birks, E.J.; Tansley, P.D.; Hardy, J.; George, R.S.; Bowles, C.T.; Burke, M.; Banner, N.R.; Khaghani, A.; Yacoub, M.H. Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med. 2006, 355, 1873–1884. [Google Scholar] [CrossRef] [PubMed]
- Sennhauser, S.; Sridharan, L. Left Ventricular Assist Device Emergencies: Diagnosis and Management. Crit. Care Clin. 2024, 40, 159–177. [Google Scholar] [CrossRef]
- Frigerio, M. Left Ventricular Assist Device: Indication, Timing, and Management. Heart Fail. Clin. 2021, 17, 619–634. [Google Scholar] [CrossRef]
- Cogswell, R.; John, R.; Shaffer, A. Right Ventricular Failure After Left Ventricular Assist Device. Cardiol. Clin. 2020, 38, 219–225. [Google Scholar] [CrossRef]
- Alam, A.; Milligan, G.P.; Gong, T. The dominant left ventricular assist device: Lessons from an era. ESC Heart Fail. 2021, 8, 5551–5554. [Google Scholar] [CrossRef]
- Kirklin, J.K.; Naftel, D.C.; Kormos, R.L.; Stevenson, L.W.; Pagani, F.D.; Miller, M.A.; Timothy Baldwin, J.; Young, J.B. Fifth INTERMACS annual report: Risk factor analysis from more than 6,000 mechanical circulatory support patients. J. Heart Lung Transplant. 2013, 32, 141–156. [Google Scholar] [CrossRef]
- Kirklin, J.K.; Naftel, D.C.; Kormos, R.L.; Stevenson, L.W.; Pagani, F.D.; Miller, M.A.; Ulisney, K.L.; Baldwin, J.T.; Young, J.B. Third INTER-MACS Annual Report: The evolution of destination therapy in the United States. J. Heart Lung Transplant. 2011, 30, 115–123. [Google Scholar] [CrossRef]
- Starling, R.C.; Naka, Y.; Boyle, A.J.; Gonzalez-Stawinski, G.; John, R.; Jorde, U.; Russell, S.D.; Conte, J.V.; Aaronson, K.D.; McGee, E.C., Jr.; et al. Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist de-vice as a bridge to heart transplantation: A prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J. Am. Coll. Cardiol. 2011, 57, 1890–1898. [Google Scholar]
- Klaeske, K.; Meyer, A.L.; Saeed, D.; Eifert, S.; Jawad, K.; Sieg, F.; Haunschild, J.; Borger, M.A.; Dieterlen, M.T. Decreased Platelet Specific Receptor Expression of P-Selectin and GPIIb/IIIa Predict Future Non-Surgical Bleeding in Patients after Left Ventricular Assist Device Implantation. Int. J. Mol. Sci. 2022, 23, 10252. [Google Scholar] [CrossRef] [PubMed]
- Tscharre, M.; Wittmann, F.; Kitzmantl, D.; Lee, S.; Eichelberger, B.; Wadowski, P.P.; Laufer, G.; Wiedemann, D.; Forstner-Bergauer, B.; Ay, C.; et al. Platelet activation and aggregation in different centrifugal-flow left ventricular assist devices. Platelets. 2022, 33, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Arias, K.; Sun, W.; Wang, S.; Sorensen, E.N.; Feller, E.; Kaczorowski, D.; Griffith, B.; Wu, Z.J. Acquired platelet defects are responsible for nonsurgical bleeding in left ventricular assist device recipients. Artif. Organs. 2022, 46, 2244–2256. [Google Scholar] [CrossRef] [PubMed]
- Klaeske, K.; Dieterlen, M.T.; Eifert, S.; Scholz, U.; Garbade, J.; Jawad, K.; Sieg, F.; Borger, M.A.; Meyer, A.L. Device-induced platelet dysfunction in patients after left ventricular assist device implantation. J. Thromb. Haemost. 2021, 19, 1331–1341. [Google Scholar] [CrossRef]
- Poredos, P.; Jezovnik, M.K.; Radovancevic, R.; Gregoric, I.D. Endothelial Function in Patients with Continuous-Flow Left Ventricular Assist Devices. Angiology. 2021, 72, 9–15. [Google Scholar] [CrossRef]
- Ali, A.; Uribe, C.; Araujo-Gutierrez, R.; Cruz-Solbes, A.S.; Marcos-Abdala, H.G.; Youker, K.A.; Guha, A.; Torre-Amione, G.; Nguyen, D.T.; Graviss, E.A.; et al. Endothelial Dysfunction-related Neurological Bleeds with Continuous Flow-Left Ventricular Assist Devices Measured by Digital Thermal Monitor. ASAIO J. 2021, 67, 561–566. [Google Scholar] [CrossRef]
- Lou, X.; Templeton, D.L.; John, R.; Dengel, D.R. Effects of continuous flow left ventricular assist device support on microvascular endothelial function. J. Cardiovasc. Transl. Res. 2012, 5, 345–350. [Google Scholar] [CrossRef]
- Lietz, K. Destination therapy: Patient selection and current outcomes. J. Card. Surg. 2010, 25, 462–471. [Google Scholar] [CrossRef]
- Lahpor, J.; Khaghani, A.; Hetzer, R.; Pavie, A.; Friedrich, I.; Sander, K.; Struber, M. European results with a continuous flow ventricular assist device for advanced heart failure patients. Eur. J. Cardiothorac. Surg. 2010, 37, 357–361. [Google Scholar] [CrossRef]
- Yerigeri, K.; Kadatane, S.; Mongan, K.; Boyer, O.; Burke, L.L.G.; Sethi, S.K.; Licht, C.; Raina, R. Atypical Hemolytic-Uremic Syndrome: Genetic Basis, Clinical Manifestations, and a Multidisciplinary Approach to Management. J. Multidiscip. Healthc. 2023, 16, 2233–2249. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, S.; Li, X.; Wen, X.; Liu, S.; Zu, R.; Ren, H.; Li, T.; Yang, C.; Luo, H. Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacol. Res. 2023, 191, 106777. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.H.H.; Simmonds, M.J.; Fraser, K.H.; Igarashi, K.; Ki, K.K.; Murashige, T.; Joseph, M.T.; Fraser, J.F.; Tansley, G.D.; Watanabe, N. Discrete responses of erythrocytes, platelets, and von Willebrand factor to shear. J. Biomech. 2022, 130, 110898. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Han, D.; Awad, M.A.; Leibowitz, J.L.; Griffith, B.P.; Wu, Z.J. Role of thrombin to non-physiological shear stress induced platelet activation and function alternation. Thromb. Res. 2022, 219, 141–149. [Google Scholar] [CrossRef]
- Dela Paz, N.G.; Melchior, B.; Frangos, J.A. Shear stress induces Galpha(q/11) activation independently of G protein-coupled receptor activation in endothelial cells. Am. J. Physiol.—Cell Physiol. 2017, 312, C428–C437. [Google Scholar] [CrossRef] [PubMed]
- Barauna, V.G.; Magalhaes, F.C.; Campos, L.C.; Reis, R.I.; Kunapuli, S.P.; Costa-Neto, C.M.; Miyakawa, A.A.; Krieger, J.E. Shear stress-induced Ang II AT1 receptor activation: G-protein dependent and independent mechanisms. Biochem. Biophys. Res. Commun. 2013, 434, 647–652. [Google Scholar] [CrossRef]
- Chen, Z.; Mondal, N.K.; Ding, J.; Koenig, S.C.; Slaughter, M.S.; Griffith, B.P.; Wu, Z.J. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress. Mol. Cell. Biochem. 2015, 409, 93–101. [Google Scholar] [CrossRef]
- Chan, C.H.H.; Inoue, M.; Ki, K.K.; Murashige, T.; Fraser, J.F.; Simmonds, M.J.; Tansley, G.D.; Watanabe, N. Shear-dependent platelet aggregation size. Artif. Organs. 2020, 44, 1286–1295. [Google Scholar] [CrossRef]
- Rennier, K.; Ji, J.Y. Shear stress attenuates apoptosis due to TNFalpha, oxidative stress, and serum depletion via death-associated protein kinase (DAPK) expression. BMC Res. Notes 2015, 8, 85. [Google Scholar] [CrossRef]
- Chu, Y.; Guo, H.; Zhang, Y.; Qiao, R. Procoagulant platelets: Generation, characteristics, and therapeutic target. J. Clin. Lab. Anal. 2021, 35, e23750. [Google Scholar] [CrossRef]
- Esparza, O.; Higa, K.; Davizon-Castillo, P. Molecular and functional characteristics of megakaryocytes and platelets in aging. Curr. Opin. Hematol. 2020, 27, 302–310. [Google Scholar] [CrossRef]
- Sabrkhany, S.; Kuijpers, M.J.E.; Griffioen, A.W.; Oude Egbrink, M.G.A. Platelets: The holy grail in cancer blood biomarker research? Angiogenesis 2019, 22, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Kanikarla-Marie, P.; Lam, M.; Menter, D.G.; Kopetz, S. Platelets, circulating tumor cells, and the circulome. Cancer Metastasis Rev. 2017, 36, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Agbani, E.O.; Poole, A.W. Procoagulant platelets: Generation, function, and therapeutic targeting in thrombosis. Blood 2017, 130, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Tesfamariam, B. Distinct characteristics of neonatal platelet reactivity. Pharmacol. Res. 2017, 123, 1–9. [Google Scholar] [CrossRef]
- Middleton, E.; Rondina, M.T. Platelets in infectious disease. Hematology Am. Soc. Hematol. Educ. Program 2016, 2016, 256–261. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, W.; Liu, Z.; Pei, Y.; Zhu, Y.; Chen, F.; Zou, L.; Jiang, Y.; Liu, X.; Huang, J.; et al. Early predictive value of platelet function for clinical outcome in sepsis. J. Infect. 2022, 84, 628–636. [Google Scholar] [CrossRef]
- Remenyi, G.; Szasz, R.; Friese, P.; Dale, G.L. Role of mitochondrial permeability transition pore in coated-platelet formation. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 467–471. [Google Scholar] [CrossRef]
- Sokolovskaya, A.A.; Popov, M.A.; Sergeeva, E.A.; Metelkin, A.A.; Zybin, D.I.; Shumakov, D.V.; Kubatiev, A.A. Investigation of Platelet Apoptosis in Patients after Surgical Myocardial Revascularization. Biomedicines 2023, 11, 251. [Google Scholar] [CrossRef]
- Herbert, J.M.; Savi, P. P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin. Vasc. Med. 2003, 3, 113–122. [Google Scholar] [CrossRef]
- Koessler, J.; Schwarz, M.; Weber, K.; Etzel, J.; Koessler, A.; Boeck, M.; Kobsar, A. The role of adenosine diphosphate mediated platelet responsiveness for the stability of platelet integrity in citrated whole blood under ex vivo conditions. PLoS ONE 2017, 12, e0188193. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Lee, J.Y.; Park, H.D.; Kim, T.H.; Park, M.C.; Choi, G.; Kim, S. Identification of a New Morpholine Scaffold as a P2Y12 Receptor Antagonist. Molecules. 2016, 21, 1114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, J.; Gao, Z.G.; Zhang, D.; Zhu, L.; Han, G.W.; Moss, S.M.; Paoletta, S.; Kiselev, E.; Lu, W.; et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 2014, 509, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.A.; Hennig, G.W.; Ward, S.M.; Sanders, K.M. Temporal sequence of activation of cells involved in purinergic neurotransmission in the colon. J. Physiol. 2015, 593, 1945–1963. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Liu, X.; Kang, L.; Yu, Z.; Zhao, Z.; Li, J.; Ma, B.; Cong, Y. Pennogenin tetraglycoside stimulates secretion-dependent activation of rat platelets: Evidence for critical roles of adenosine diphosphate receptor signal pathways. Thromb. Res. 2012, 129, e209–e216. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, M. P2Y12 receptors: Structure and function. J. Thromb. Haemost. 2015, 13 (Suppl. 1), S10–S16. [Google Scholar] [CrossRef]
- Maayani, S.; Schwarz, T.E.; Patel, N.D.; Craddock-Royal, B.D.; Tagliente, T.M. Agonist concentration-dependent differential responsivity of a human platelet purinergic receptor: Pharmacological and kinetic studies of aggregation, deaggregation and shape change responses mediated by the purinergic P2Y1 receptor in vitro. Platelets 2003, 14, 445–462. [Google Scholar] [CrossRef]
- Savi, P.; Labouret, C.; Delesque, N.; Guette, F.; Lupker, J.; Herbert, J.M. P2y(12), a new platelet ADP receptor, target of clopidogrel. Biochem. Biophys. Res. Commun. 2001, 283, 379–383. [Google Scholar] [CrossRef]
- Takasaki, J.; Kamohara, M.; Saito, T.; Matsumoto, M.; Matsumoto, S.; Ohishi, T.; Soga, T.; Matsushime, H.; Furuichi, K. Molecular cloning of the platelet P2T(AC) ADP receptor: Pharmacological comparison with another ADP receptor, the P2Y(1) receptor. Mol. Pharmacol. 2001, 60, 432–439. [Google Scholar]
- Jobe, S.M.; Wilson, K.M.; Leo, L.; Raimondi, A.; Molkentin, J.D.; Lentz, S.R.; Di Paola, J. Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood 2008, 111, 1257–1265. [Google Scholar] [CrossRef]
- Rawish, E.; Langer, H.F. Platelets and the Role of P2X Receptors in Nociception, Pain, Neuronal Toxicity and Thromboinflammation. Int. J. Mol. Sci. 2022, 23, 6585. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Huang, L.T.; Zhang, C.P.; Li, Q.; Wang, J.H. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front. Aging Neurosci. 2022, 14, 890509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shao, Y.; Tang, C.; Liu, Z.; Tang, D.; Hu, C.; Liang, X.; Hu, Z.; Luo, G. Identification of Novel Biomarkers in Platelets for Diagnosing Parkinson’s Disease. Eur. Neurol. 2022, 85, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Strijkova, V.; Todinova, S.; Andreeva, T.; Langari, A.; Bogdanova, D.; Zlatareva, E.; Kalaydzhiev, N.; Milanov, I.; Taneva, S.G. Platelets’ Nanomechanics and Morphology in Neurodegenerative Pathologies. Biomedicines 2022, 10, 2239. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, O.; Saarma, M. Neurotrophic Factors in Parkinson’s Disease: Clinical Trials, Open Challenges and Nanoparticle-Mediated Delivery to the Brain. Front. Cell. Neurosci. 2021, 15, 682597. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Parrilla, Y.; Gonzalez-Billault, C.; Fuentes, E.; Palomo, I.; Alarcón, M. Decoding the Role of Platelets and Related MicroRNAs in Aging and Neurodegenerative Disorders. Front. Aging Neurosci. 2019, 11, 151. [Google Scholar] [CrossRef]
- Popov, L.D. Mitochondrial biogenesis: An update. J. Cell. Mol. Med. 2020, 24, 4892–4899. [Google Scholar] [CrossRef]
- Jornayvaz, F.R.; Shulman, G.I. Regulation of mitochondrial biogenesis. Essays Biochem. 2010, 47, 69–84. [Google Scholar] [CrossRef]
- Frey, T.G.; Mannella, C.A. The internal structure of mitochondria. Trends Biochem. Sci. 2000, 25, 319–324. [Google Scholar] [CrossRef]
- Attardi, G.; Schatz, G. Biogenesis of mitochondria. Annu. Rev. Cell Biol. 1988, 4, 289–333. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Ghodke, P.P. Etheno adducts: From tRNA modifications to DNA adducts and back to miscoding ribonucleotides. Genes. Environ. 2021, 43, 24. [Google Scholar] [CrossRef]
- Peccerella, T.; Arslic-Schmitt, T.; Mueller, S.; Linhart, K.B.; Seth, D.; Bartsch, H.; Seitz, H.K. Chronic Ethanol Consumption and Generation of Etheno-DNA Adducts in Cancer-Prone Tissues. Adv. Exp. Med. Biol. 2018, 1032, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Linhart, K.; Bartsch, H.; Seitz, H.K. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts. Redox Biol. 2014, 3, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.; Barbin, A.; Velic, I.; Bartsch, H. Etheno DNA-base adducts from endogenous reactive species. Mutat. Res. 1999, 424, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Barbin, A. Formation of DNA etheno adducts in rodents and humans and their role in carcinogenesis. Acta Biochim. Pol. 1998, 45, 145–161. [Google Scholar] [CrossRef]
- Bartsch, H.; Nair, J.; Velic, I. Etheno-DNA base adducts as tools in human cancer aetiology and chemoprevention. Eur. J. Cancer Prev. 1997, 6, 529–534. [Google Scholar] [CrossRef]
- Obtułowicz, T.; Wilczura, A.; Speina, E.; Swoboda, M.; Janik, J.; Janowska, B.; Cieśla, J.M.; Kowalczyk, P.; Jawień, A.; Gackowski, D.; et al. Aberrant repair of etheno–DNA adducts in leukocytes and colon tissue of colon cancer patients. Free. Radic. Biol. Med. 2010, 49, 1064–1071. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Jaworek, J.; Kot, M.; Sokolowska, B.; Bielen, A.; Janowska, B.; Ciesla, J.M.; Szparecki, G.; Sadoś, B.; Tudek, B. In-flammation increases oxidative DNA damage repair and stimulates preneoplastic changes in colons of newborn rats. J. Physiol. Pharmacol. 2016, 67, 277–286. [Google Scholar]
- Chang, X.; Lochner, A.; Wang, H.H.; Wang, S.; Zhu, H.; Ren, J.; Zhou, H. Coronary microvascular injury in myocardial infarction: Perception and knowledge for mitochondrial quality control. Theranostics 2021, 11, 6766–6785. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the man-agement of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar]
- Pasupathy, S.; Ait, T.; Dreyer, R.P.; Tavella, R.; Beltrame, J.F. Systematic review of patients presenting with suspected myocardial infarction and non-obstructive coronary arteries. Circulation 2015, 131, 861–870. [Google Scholar] [CrossRef]
- Niccoli, G.; Scalone, G.; Crea, F. Acute myocardial infarction with no obstructive coronary atherosclerosis: Mechanisms and management. Eur. Heart J. 2015, 36, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, P.; Vazzana, N.; Riondino, S.; Cuccurullo, C.; Guadagni, F.; Davı`, G. Platelet function in health and disease: From molecular mechanisms, redox considerations to novel therapeutic opportunities. Antioxid. Redox Signal 2012, 17, 1447–1485. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.J.; Salido, G.M.; Go’mez-Arteta, E.; Rosado, J.A.; Pariente, J.A. Thrombin induces apoptotic events through the generation of reactive oxygen species in human platelets. J. Thromb. Haemost. 2007, 5, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.F. Thrombosis of epicardial coronary veins in acute myocardial infarction. Am. Heart J. 1979, 97, 696–700. [Google Scholar] [CrossRef]
- Numasawa, Y. Impact of Platelet Reactivity on Ischemic and Bleeding Events After Percutaneous Coronary Intervention—A Long-Term Perspective. Circ. J. 2022, 86, 1350–1351. [Google Scholar] [CrossRef]
- Redfors, B.; Généreux, P.; Witzenbichler, B.; Kirtane, A.J.; Maehara, A.; Weisz, G.; Madhavan, M.V.; McAndrew, T.; Mehran, R.; Stone, G.W. Percutaneous coronary intervention of bifurcation lesions and platelet reactivity. Int. J. Cardiol. 2018, 250, 92–97. [Google Scholar] [CrossRef]
- Alexopoulos, D.; Xenogiannis, I.; Vlachakis, P.; Tantry, U.; Gurbel, P.A. Peri-Procedural Platelet Reactivity in Percutaneous Coronary Intervention. Thromb. Haemost. 2018, 118, 1131–1140. [Google Scholar] [CrossRef]
- Fanaroff, A.C.; Rao, S.V. Antiplatelet Therapy in Percutaneous Coronary Intervention. Interv. Cardiol. Clin. 2016, 5, 221–237. [Google Scholar] [CrossRef]
- Bonello L, Sabatier F, Camoin-Jau L, Paganelli F, Dignat-George F Platelets and endothelium: Two key players in percutaneous coronary intervention. Arch. Cardiovasc. Dis. 2011, 104, 601–603. [CrossRef]
- Lee, M.S.; David, E.M.; Makkar, R.R.; Wilentz, J.R. Molecular and cellular basis of restenosis after percutaneous coronary intervention: The intertwining roles of platelets, leukocytes, and the coagulation-fibrinolysis system. J. Pathol. 2004, 203, 861–870. [Google Scholar] [CrossRef]
- Sukhinina, T.S.; Pevzner, D.V.; Mazurov, A.V.; Vlasik, T.N.; Solovieva, N.G.; Kostritca, N.S.; Shakhnovich, R.M.; Yavelov, I.S. The role of platelet glycoprotein IIb/IIIa inhibitors in current treatment of acute coronary syndrome. Kardiologiia 2022, 62, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Valgimigli, M.; Minarelli, M. Triple antiplatelet therapy in acute coronary syndromes. Drugs 2011, 71, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Farhan, S.; Höchtl, T.; Kautzky-Willer, A.; Wojta, J.; Huber, K. Antithrombotic therapy in patients with coronary artery disease and with type 2 diabetes mellitus. Wien. Med. Wochenschr. 2010, 160, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Colwell, J.A.; Nesto, R.W. The platelet in diabetes: Focus on prevention of ischemic events. Diabetes Care 2003, 26, 2181–2188. [Google Scholar] [CrossRef]
- Pollack, C.V., Jr. Utility of platelet adp receptor antagonism in the emergency department: A review. J. Emerg. Med. 2003, 24, 45–54. [Google Scholar] [CrossRef]
- Samanbar, S.; Piñeyroa, J.A.; Moreno-Castaño, A.B.; Pino, M.; Torramadé-Moix, S.; Martinez-Sanchez, J.; Lozano, M.; Sanz, C.; Escolar, G.; Diaz-Ricart, M. T-TAS() 01 as a new tool for the evaluation of hemostasis in thrombocytopenic patients after platelet transfusion. Blood Transfus. 2024, 22, 166–175. [Google Scholar] [CrossRef]
- Lecchi, A.; La Marca, S.; Padovan, L.; Boscarino, M.; Peyvandi, F.; Tripodi, A. Flow-chamber device (T-TAS) to diagnose patients suspected of platelet function defects. Blood Transfus. 2024, 22, 55–64. [Google Scholar] [CrossRef]
- Zheng, K.L.; Wallen, H.; Aradi, D.; Godschalk, T.C.; Hackeng, C.M.; Dahlen, J.R.; Ten Berg, J.M. The Total Thrombus Formation (T-TAS) platelet (PL) assay, a novel test that evaluates whole blood platelet thrombus formation under physiological conditions. Platelets 2022, 33, 273–277. [Google Scholar] [CrossRef]
- Kaikita, K.; Hosokawa, K.; Dahlen, J.R.; Tsujita, K. Total Thrombus-Formation Analysis System (T-TAS): Clinical Application of Quantitative Analysis of Thrombus Formation in Cardiovascular Disease. Thromb. Haemost. 2019, 119, 1554–1562. [Google Scholar] [CrossRef]
- Al Ghaithi, R.; Mori, J.; Nagy, Z.; Maclachlan, A.; Hardy, L.; Philippou, H.; Hethershaw, E.; Morgan, N.V.; Senis, Y.A.; Harrison, P. Evaluation of the Total Thrombus-Formation System (T-TAS): Application to human and mouse blood analysis. Platelets 2019, 30, 893–900. [Google Scholar] [CrossRef]
- Ushikoshi, H.; Okada, H.; Morishita, K.; Imai, H.; Tomita, H.; Nawa, T.; Suzuki, K.; Ikeshoji, H.; Kato, H.; Yoshida, T.; et al. An autopsy report of acute myocardial infarction with hypertrophic obstructive cardiomyopathy-like heart. Cardiovasc. Pathol. 2015, 24, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, H.R. Myocardial infarction without obstructive coronary artery disease. Curr. Opin. Cardiol. 2012, 27, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.W. Recognition, pathophysiology, and management of acute myocardial infarction. Am. J. Health Syst. Pharm. 2001, 58, 1709–1718; quiz 1719–1721. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, S.; Montecucco, F.; Carbone, F.; Valbusa, A.; Massobrio, L.; Porto, I.; Brunelli, C.; Rosa, G.M. An Emerging Cardiovascular Disease: Takotsubo Syndrome. BioMed Res. Int. 2019, 2019, 6571045. [Google Scholar] [CrossRef]
- Kumar, D.R.; Hanlin, E.; Glurich, I.; Mazza, J.J.; Yale, S.H. Virchow’s contribution to the understanding of thrombosis and cellular biology. Clin. Med. Res. 2010, 8, 168–172. [Google Scholar] [CrossRef]
- Mammen, E.F. Pathogenesis of venous thrombosis. Chest 1992, 102, 640S–644S. [Google Scholar] [CrossRef]
- Veyre, B.; Saint Pierre, A.; Loire, R.; Perrin, A. Thrombose du sinus coronaire sur sonde stimulation endo-ventriculaire droite. Arch. Mal. Coeur 1976, 69, 983–986. [Google Scholar]
- Figuerola, M.; Tomas, M.T.; Armengol, J.; Bejar, A.; Adrados, M.; Bonet, A. Pericardial tamponade and coronary sinus thrombosis associated with central venous catheterization. Chest 1992, 101, 1154–1155. [Google Scholar] [CrossRef]
- Guindi, M.M.; Walley, V.M. Coronary sinus thrombosis: A potential complication of right heart catheterization. Can. J. Surg. 1987, 30, 66–67. [Google Scholar]
- Philips, J.B.; Ruiz-Castanada, N.; Setzer, E.S. Coronary sinus thrombosis: A central venous catheter complication. J. Pediatr. Surg. 1981, 16, 733–734. [Google Scholar] [CrossRef]
- McMichael, J.; Mounsey, J.P.D. A complication following coronary sinus and cardiac vein catherization in man. Br. Heart J. 1951, 13, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.A.; Senior, A.J. Coronary sinus thrombosis and myocardial infarction secondary to ventriculoatrial shunt insertion. J. Pediatr. Surg. 1990, 25, 1214–1215. [Google Scholar] [CrossRef] [PubMed]
- Ross, E.M.; Macher, A.M.; Roberts, W.C. Aspergillus fumigatus thrombi causing total occlusion of both coronary arterial ostia, all four major epicardial veins and coronary sinus and associated with purulent pericarditis. Am. J. Cardiol. 1985, 56, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Urbanova, D. Coronary sinus thrombosis in patients after heart transplantation. CorVasa 1989, 31, 231–237. [Google Scholar]
- Hazan, M.B.; Byrnes, D.A.; Elmquist, T.H.; Mazzara, J.T. Angiographic demonstration of coronary, sinus thrombosis: A potential consequence of trauma to the coronary sinus. Cathet Cardiovasc. Diagn. 1982, 8, 405–408. [Google Scholar] [CrossRef]
- Lanz Ch Dragoje, S.; Zender, H.O.; Schneider, J.; Cox, J.N.; Baumann, R.P. Cardiac vein thrombosis and haemorrhagic myo-cardial necrosis; report of a case with review of the literature. Virchows Arch. 2000, 437, 560–563. [Google Scholar] [CrossRef]
- Flynn, J.E.; Mann, F.D. The presence and pathogenesis of endocardial and subendocardial degeneration, mural thrombi, and thromboses of the thebesian veins in cardiac failure from causes other than myocardial infarction. Am. Heart J. 1946, 31, 757–768. [Google Scholar] [CrossRef]
- Lake, B. Cardiac vein thrombosis with myocardial hemorrhage. Am. Heart J. 1958, 55, 157–160. [Google Scholar] [CrossRef]
- Sinha, M.; Pandey, N.N.; Sharma, A. Anomalies of the Coronary Sinus and Its Tributaries: Evaluation on Multidetector Computed Tomography Angiography. J. Thorac. Imaging 2020, 35, W60–W67. [Google Scholar] [CrossRef]
- Pham, T.; Sun, W. Comparison of tbiaxial mechanical properties of coronary sinus tissues from porcine, ovine and aged human species. J. Mech. Behav. Biomed. Mater. 2012, 6, 21–29. [Google Scholar] [CrossRef]
- Poetsch, A.R. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput. Struct. Biotechnol. J. 2020, 18, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 2003, 17, 1195–1214. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Cieśla, J.M.; Komisarski, M.; Kuśmierek, J.T.; Tudek, B. Long- chain adducts of trans-4-hydroxy-2-nonenal to DNA bases cause recombination, base substitutions and frameshift mutations in M13 phage. Mutat. Res. 2004, 550, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Alrawi, S.J.; Schiff, M.; Carroll, R.E.; Dayton, M.; Gibbs, J.F.; Kulavlat, M.; Tan, D.; Berman, K.; Stoler, D.L.; Anderson, G.R. Aberrant crypt foci. Anticancer Res. 2006, 26, 107–119. [Google Scholar]
- Wang, Y.; Tao, E.W.; Tan, J.; Gao, Q.Y.; Chen, Y.X.; Fang, J.Y. tRNA modifications: Insights into their role in human cancers. Trends Cell Biol. 2023, 33, 1035–1048. [Google Scholar] [CrossRef]
- Kochetkov, N.K.; Shibaev, V.N.; Kost, A.A. New reaction of adenine and cytosine derivatives, potentially useful for nucleic acid modifications. Tetrahedron Lett. 1971, 22, 1993–1996. [Google Scholar] [CrossRef]
- Leonard, N.J. Etheno-bridged nucleotides in structural diagnosis and carcinogenesis. Biochem. Mol. Biol. 1992, 3, 273–297. [Google Scholar]
- Chung, F.L.; Chen, H.J.; Nath, R.G. Lipid peroxidation as a potential endogenous source for the formation of exocyclic DNA adducts. Carcinogenesis 1996, 17, 2105–2111. [Google Scholar] [CrossRef]
- Chaudhary, A.K.; Reddy, G.R.; Blair, I.A.; Marnett, L.J. Characterization of an N6-oxo-propenyl-2′-deoxyadenosine adduct in malondialdehyde-modified DNA using liquid chromatography electrospray ionization tandem mass spectrometry. Carcinogenesis 1996, 17, 1167–1170. [Google Scholar] [CrossRef]
- Yan, J.; Chen, J.; Zhang, N.; Yang, Y.; Zhu, W.; Li, L.; He, B. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J. Mater. Chem. B 2020, 8, 492–503. [Google Scholar] [CrossRef]
- Vaca, C.E.; Fang, J.-L.; Mutanen, M.; Valsta, L. 32P-postlabelling determination of DNA adducts of malonaldehyde in humans: Total white blood cells and breast tissue. Carcinogenesis 1995, 16, 1847–1851. [Google Scholar] [CrossRef] [PubMed]
- Swenberg, J.A.; Fedtke, N.; Ciroussel, F.; Barbin, A.; Bartsch, H. Etheno adducts formed in DNA of vinyl chloride-exposed rats are highly persistent in liver. Carcinogenesis 1992, 13, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Swenberg, J.A.; La, D.K.; Scheller, N.A.; Wu, K.-Y. Dose-response relationships for carcinogens. Toxicol. Lett. 1995, 82–83, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Swenberg, J.A.; Bogdanffy, M.S.; Ham, A.; Holt, S.; Kim, A.; Morinello, E.J.; Ranasinghe, A.; Scheller, N.; Upton, P.B. Formation and repair of DNA adducts in vinyl chloride- and vinyl fluoride-induced carcinogenesis. In Exocyclic DNA Adducts in Mutagenesis and Carcinogenesis; IARC: Lyon, France, 1999; pp. 29–43. [Google Scholar]
- Wacker, M.; Schuler, D.; Wanek, P.; Eder, E. Development of a 32P-postlabeling method for the detection of 1,N2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal in vivo. Chem. Res. Toxicol. 2000, 13, 1165–1173. [Google Scholar] [CrossRef]
- Wacker, M.; Wanek, P.; Eder, E. Detection of 1,N2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal after gavage of trans-4-hydroxy-2-nonenal or induction of lipid peroxidation with carbon tetrachloride in F344 rats. Chem. Biol. Interact. 2001, 137, 269–283. [Google Scholar] [CrossRef]
- Torgasheva, N.A.; Diatlova, E.A.; Grin, I.R.; Endutkin, A.V.; Mechetin, G.V.; Vokhtantsev, I.P.; Yudkina, A.V.; Zharkov, D.O. Noncatalytic Domains in DNA Glycosylases. Int. J. Mol. Sci. 2022, 23, 7286. [Google Scholar] [CrossRef]
- Pinthong, N.; Limudomporn, P.; Vasuvat, J.; Adisakwattana, P.; Rattaprasert, P.; Chavalitshe- winkoon-Petmitr, P. Molecular characterization of Plasmodium falciparum DNA- 3-methyladenine glycosylase. Malar. J. 2020, 19, 284. [Google Scholar] [CrossRef]
- Levine, R.L.; Yang, I.Y.; Hossain, M.; Pandya, G.A.; Grollman, A.P.; Moriya, M. Mutagenesis induced by a single 1,N6-ethenodeoxyadenosine adduct in human cells. Cancer Res. 2000, 60, 4098–4104. [Google Scholar]
- Eisen, J.A.; Hanawalt, P.C. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat. Res. 1999, 435, 171–213. [Google Scholar] [CrossRef]
- Friedberg, E.C.; Walker, G.C.; Siede, W. DNA Repair and Mutagenesis; American Society of Microbiology Press: Washington, DC, USA, 1995. [Google Scholar]
- Speina, E. Glycosylases of Exocyclic Adducts to DNA Bases and Products of Their Rearrangement Studied in Model Systems and in Lung Cancer. Ph.D. Thesis, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warszawa, Poland, 2003. [Google Scholar]
- Oliński, R.; Gackowski, D.; Foksiński, M.; Różalski, R.; Roszkowski, K.; Jaruga, P. Oxidative DNA damage: Assessment of the role in carcinogenesis, artherosclerosis, and acquired immunodeficiency syndrome. Free Radic. Biol. Med. 2002, 33, 192–200. [Google Scholar]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Dizdaroglu, M.; Laval, J.; Boiteux, S. Substrate specificity of the Escherichia coli endonuclease III: Excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals. Biochemistry 1993, 32, 12105–12111. [Google Scholar] [CrossRef] [PubMed]
- Konieczka, P.; Barszcz, M.; Kowalczyk, P.; Szlis, M.; Jankowski, J. The potential of acetylsalicylic acid and vitamin E in modulating inflammatory cascades in chickens under lipopolysaccharide-induced inflammation. Vet. Res. 2019, 50, 65. [Google Scholar] [CrossRef] [PubMed]
- Melissa, V. Chan Factors that modulate platelet reactivity as measured by 5 assay platforms in 3429 individuals. Res. Pract. Thromb. Haemost. 2024, 8, 102406. [Google Scholar]
- Yamazaki, M. Monitoring of Antithrombotic Therapy. J. Atheroscler. Thromb. 2020, 27, 201–203. [Google Scholar] [CrossRef]
- Melchinger, H.; Jain, K.; Tyagi, T.; Hwa, J. Role of platelet mitochondria: Life in a nucleus-free zone. Front. Cardiovasc. Med. 2019, 6, 153. [Google Scholar] [CrossRef]
- Kuhlbrandt, W. Structure and function of mitochondrial membranę protein complexes. BMC Biol. 2015, 13, 89. [Google Scholar] [CrossRef]
- Wang, C.; Youle, R.J. The role of mitochondria in apoptosis. Annu. Rev. Genet. 2009, 43, 95–118. [Google Scholar] [CrossRef]
- Hekimi, S.; Wang, Y.; Noe, A. Mitochondrial ROS and the effectors of the intrinsic apoptotic pathway in aging cells: The discerning killers! Front. Genet. 2016, 7, 161. [Google Scholar] [CrossRef]
- Kim, H.E.; Grant, A.R.; Simic, M.S.; Kohnz, R.A.; Nomura, D.K.; Durieux, J.; Riera, C.E.; Sanchez, M.; Kapernick, E.; Wolff, S.; et al. Lipid biosynthesis coordinates a mitochondrial-to-cytosolic stress response. Cell 2016, 166, 1539.e6–1552.e6. [Google Scholar] [CrossRef]
- Hayashi, T.; Tanaka, S.; Hori, Y.; Hirayama, F.; Sato, E.F.; Inoue, M. Role of mitochondria in the maintenance of platelet function during in vitro storage. Transfus. Med. 2011, 21, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Kholmukhamedov, A.; Jobe, S. Platelet respiration. Blood Adv. 2019, 3, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.A.; Byun, H.M. Platelet mitochondrial DNA methylation: A potential new marker of cardiovascular disease. Clin. Epigenetics 2015, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Avila, C.; Huang, R.J.; Stevens, M.V.; Aponte, A.M.; Tripodi, D.; Kim, K.Y.; Sack, M.N. Platelet mitochondrial dysfunction is evident in type 2 diabetes in association with modifications of mitochondrial antioxidant stress proteins. Exp. Clin. Endocrinol. Diabetes 2012, 120, 248–251. [Google Scholar] [PubMed]
- Protti, A.; Fortunato, F.; Artoni, A.; Lecchi, A.; Motta, G.; Mistraletti, G.; Novembrino, C.; Comi, G.P.; Gattinoni, L. Platelet mitochondrial dysfunction in critically ill patients: Comparison between sepsis and cardiogenic shock. Crit. Care 2015, 19, 39. [Google Scholar] [CrossRef]
- Evans, M.D.; Dizdaroglu, M.; Cooke, M.S. Oxidative DNA damage and disease: Induction, repair and significance. Mutat. Res. 2004, 567, 1–61. [Google Scholar] [CrossRef]
- Lindahl, T. Instability and decay of the primary structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef]
- Fujikawa, K.; Kamiya, H.; Yakushiji, H.; Nakabeppu, Y.; Kasai, H. Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res. 2001, 29, 449–454. [Google Scholar] [CrossRef]
- Fujikawa, K.; Kamiya, H.; Yakushiji, H.; Fujii, Y.; Nakabeppu, Y.; Kasai, H. The oxidized forms of dATP are substrates for the human MutT homologue the hMTH1 protein. J. Biol. Chem. 1999, 274, 18201–18205. [Google Scholar] [CrossRef]
- Bray, P.F.; McKenzie, S.E.; Edelstein, L.C.; Nagalla, S.; Delgrosso, K.; Ertel, A.; Kupper, J.; Jing, Y.; Londin, E.; Loher, P.; et al. The complex transcriptional landscape of the anucleate human platelet. BMC Genom. 2013, 14, 1. [Google Scholar] [CrossRef]
- Chan, D.C. Mechanisms of Disease Mitochondrial Dynamics and Its Involvement in Disease. Annu. Rev. Pathol. Mech. Dis. 2020, 15, 235–259. [Google Scholar] [CrossRef] [PubMed]
- Burnouf, T.; Chou, M.-L.; Lundy, D.J.; Chuang, E.-Y.; Tseng, C.-L.; Goubran, H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J. Biomed. Sci. 2023, 30, 79. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Kosaka, Y.; Bhatlekar, S.; Denorme, F.; Benzon, H.; Moody, A.; Moody, V.; Tugolukova, E.A.; Hull, G.; Kishimoto, N.; et al. Mi-tofusin-2 Regulates Platelet Mitochondria and Function. Circ. Res. 2024, 134, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Deng, S.L.; Lian, Z.X.; Yu, K. Roles of Toll-Like Receptors in Nitroxidative Stress in Mammals. Cells 2019, 8, 576. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, A. Antiplatelet treatment in acute coronary syndromes. Folia Cardiol. 2005, 12, 585–593. [Google Scholar]
- Mondal, N.K.; Sorensen, E.N.; Hiivala, N.J.; Feller, E.D.; Pham, S.M.; Griffith, B.P.; Wu, Z.J. Intraplatelet reactive oxygen species, mitochondrial damage and platelet apoptosis augment non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist device. Platelets 2015, 26, 536–544. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Kaczyńska, K.; Kleczkowska, P.; Bukowska-Ośko, I.; Kramkowski, K.; Sulejczak, D. The Lactoferrin Phenome-non-A Miracle Molecule. Molecules 2022, 27, 2941. [Google Scholar] [CrossRef]
- Kulkarni, P.P.; Ekhlak, M.; Dash, D. Energy metabolism in platelets fuels thrombus formation: Halting the thrombosis engine with small-molecule modulators of platelet metabolism. Metabolism 2023, 145, 155596. [Google Scholar] [CrossRef]
- Joannides, R.; Haefeli, W.E.; Linder, L.; Richard, V.; Bakkali, E.H.; Thuillez, C.; Lüscher, T.F. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 1995, 91, 1314–1319. [Google Scholar] [CrossRef]
- Gallo, G.; Rubattu, S.; Volpe, M. Mitochondrial Dysfunction in Heart Failure: From Pathophysiological Mechanisms to Therapeutic Opportunities. Int. J. Mol. Sci. 2024, 25, 2667. [Google Scholar] [CrossRef]
- Ren, H.; Hu, W.; Jiang, T.; Yao, Q.; Qi, Y.; Huang, K. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets. Biomed. Pharmacother. 2024, 174, 116545. [Google Scholar] [CrossRef] [PubMed]
- Alves-Figueiredo, H.; Silva-Platas, C.; Estrada, M.; Oropeza-Almazán, Y.; Ramos-González, M.; Bernal-Ramírez, J.; Vázquez-Garza, E.; Tellez, A.; Salazar-Ramírez, F.; Méndez-Fernández, A.; et al. Mitochondrial Ca2+ Uniporter-Dependent Energetic Dysfunction Drives Hypertrophy in Heart Failure. JACC Basic. Transl. Sci. 2024, 9, 496–518. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Hao, E.; Zhang, F.; Wei, W.; Du, Z.; Yan, G.; Wang, X.; Deng, J.; Hou, X. Diabetes cardiomyopathy: Targeted regulation of mitochondrial dysfunction and therapeutic potential of plant secondary metabolites. Front. Pharmacol. 2024, 15, 1401961. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cai, F.; Hu, L.; Lu, Y. The role of mitochondrial permeability transition pore in regulating the shedding of the platelet GPIbalpha ectodomain. Platelets. 2014, 25, 373–381. [Google Scholar] [CrossRef]
- Davie, E.W.; Kulman, J.D. An overview of the structure and function of thrombin. Semin. Thromb. Hemost. 2006, 32 (Suppl. 1), 3–15. [Google Scholar] [CrossRef]
- Boudreau, L.H.; Duchez, A.C.; Cloutier, N.; Soulet, D.; Martin, N.; Bollinger, J.; Paré, A.; Rousseau, M.; Naika, G.S.; Lévesque, T.; et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014, 124, 2173–2183. [Google Scholar] [CrossRef]
- Ramaiah, P.; Patra, I.; Abbas, A.; Fadhil, A.A.; Abohassan, M.; Al-Qaim, Z.H.; Hameed, N.M.; Al-Gazally, M.E.; Kemil Almotlaq, S.S.; Mustafa, Y.F.; et al. Mitofusin-2 in cancer: Friend or foe? Arch. Biochem. Biophys. 2022, 730, 109395. [Google Scholar] [CrossRef]
- Ding, Y.; Gui, X.; Chu, X.; Sun, Y.; Zhang, S.; Tong, H.; Ju, W.; Li, Y.; Sun, Z.; Xu, M.; et al. MTH1 protects platelet mitochondria from oxidative damage and regulates platelet function and thrombosis. Nat. Commun. 2023, 14, 4829. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, H.; Li, H.; Mou, H.; Yinwang, E.; Xue, Y.; Wang, S.; Zhang, Y.; Wang, Z.; Chen, T.; et al. Cancer cells reprogram to metastatic state through the acquisition of platelet mitochon-dria. Cell Rep. 2023, 42, 113147. [Google Scholar] [CrossRef]
- Ross, D.M.; Liang, H.P.H.; Iqra, Z.; Whittaker, S.; Tan, C.W.; Dale, B.J.; Chen, V.M. Platelets from patients with myeloproliferative neo-plasms have increased numbers of mitochondria that are hypersensitive to depolarization by thrombin. Sci. Rep. 2023, 13, 9172. [Google Scholar] [CrossRef]
- Kumar, P.; Liu, C.; Suliburk, J.; Hsu, J.W.; Muthupillai, R.; Jahoor, F.; Minard, C.G.; Taffet, G.E.; Sekhar, R.V. J Gerontol A Supple-menting Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Physical Function, and Aging Hallmarks: A Randomized Clinical Trial. Biol. Sci. Med. Sci. 2023, 78, 75–89. [Google Scholar] [CrossRef]
- Picca, A.; Calvani, R.; Coelho-Junior, H.J.; Marzetti, E. Cell Death and Inflammation: The Role of Mitochondria in Health and Disease. Cells 2021, 10, 537. [Google Scholar] [CrossRef] [PubMed]
- de Mello, A.H.; Costa, A.B.; Engel, J.D.G.; Rezin, G.T. Mitochondrial dysfunction in obesity. Life Sci. 2018, 192, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Madej, A.; Szymczak, M.; Ostaszewski, R. α-Amidoamids as New Replacements of Antibiotics-Research on the Chosen K12, R2-R4 E. coli Strains. Materials 2020, 13, 5169. [Google Scholar] [CrossRef]
- Czerwonka, G.; Guzy, A.; Kałuża, K.; Grosicka, M.; Dańczuk, M.; Lechowicz, Ł.; Gmiter, D.; Kowalczyk, P.; Kaca, W. The role of Proteus mirabilis cell wall features in biofilm formation. Arch. Microbiol. 2016, 198, 877–884. [Google Scholar] [CrossRef]
Lesion | Base Changes | ||
---|---|---|---|
In Vitro | E. coli | Mammalian Cells | |
εA | A→G, A→T > A→C | A→G > A→C, A→T | A→G > A→T, A→C |
β | A→T > A→C | A→G, A→C, A→T | Not Determined |
εC | C→A, C→T > C→G | C→T, C→A | C→A, C→T > C→G |
εC•H2O | No Incorporation | C→T | Not Determined |
N2,3εG | G→A | G→A | G→T, G→A |
1,N2-εG | G→T, G→C | G→T, G→C, G→A | G→A > G→T |
HO-ethanoG | G→T, G→C | G→T, G→C, G→A | Not Determined |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, P.; Krych, S.; Kramkowski, K.; Jęczmyk, A.; Hrapkowicz, T. Effect of Oxidative Stress on Mitochondrial Damage and Repair in Heart Disease and Ischemic Events. Int. J. Mol. Sci. 2024, 25, 12467. https://doi.org/10.3390/ijms252212467
Kowalczyk P, Krych S, Kramkowski K, Jęczmyk A, Hrapkowicz T. Effect of Oxidative Stress on Mitochondrial Damage and Repair in Heart Disease and Ischemic Events. International Journal of Molecular Sciences. 2024; 25(22):12467. https://doi.org/10.3390/ijms252212467
Chicago/Turabian StyleKowalczyk, Paweł, Sebastian Krych, Karol Kramkowski, Agata Jęczmyk, and Tomasz Hrapkowicz. 2024. "Effect of Oxidative Stress on Mitochondrial Damage and Repair in Heart Disease and Ischemic Events" International Journal of Molecular Sciences 25, no. 22: 12467. https://doi.org/10.3390/ijms252212467
APA StyleKowalczyk, P., Krych, S., Kramkowski, K., Jęczmyk, A., & Hrapkowicz, T. (2024). Effect of Oxidative Stress on Mitochondrial Damage and Repair in Heart Disease and Ischemic Events. International Journal of Molecular Sciences, 25(22), 12467. https://doi.org/10.3390/ijms252212467