Current Insights into the Roles of LncRNAs and CircRNAs in Pulpitis: A Narrative Review
<p>LncRNAs can modulate different biological processes in the context of pulpitis. LncRNAs expressed differentially and validated by qRT-PCR in pulpitis, including analyses in vitro and animal models, as well as studies in patients, are indicated. More lncRNAs have been analyzed in pulpitis; however, expression was not validated, and they were not included in this figure. Blue arrows indicate increased expression. Red arrows indicate decreased expression. The biological processes possibly regulated by validated lncRNAs in human pulpitis, as well as in models resembling some characteristics of this disease, are shown. Created with BioRender.com.</p> "> Figure 2
<p>CircRNAs can modulate diverse biological processes in the context of pulpitis. CircRNAs expressed differentially and validated by qRT-PCR in human pulpitis and in vitro models, resembling some characteristics of this disease, are indicated. Blue arrows indicate increased expression. Red arrow indicates decreased expression. Additionally, these circRNAs could be involved in regulation of different cellular processes. Created with BioRender.com.</p> ">
Abstract
:1. Introduction
1.1. LncRNAs
1.2. CircRNAs
2. Methodology
3. LncRNAs and Pulpitis
3.1. LncRNA PVT1
3.2. LncRNA MEG3
3.3. LncRNA NUTM2A-AS1
3.4. LncRNA Ankrd26
3.5. LncRNA DUXAP8
3.6. LncRNA SNHG7
3.7. LncRNA TFAP2A-AS1
3.8. LncRNA LINC00582
3.9. LncRNA FTX
4. CircRNAs and Pulpitis
4.1. Circ_0138960
4.2. CircFKBP5
4.3. Additional Studies of CircRNAs
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, H.; Okamoto, M.; Watanabe, M.; Matsumoto, S.; Moriyama, K.; Komichi, S.; Ali, M.; Matayoshi, S.; Nomura, R.; Nakano, K.; et al. Development of Rat Caries-Induced Pulpitis Model for Vital Pulp Therapy. J. Dent. Res. 2023, 102, 574–582. [Google Scholar] [CrossRef]
- Galler, K.M.; Weber, M.; Korkmaz, Y.; Widbiller, M.; Feuerer, M. Inflammatory Response Mechanisms of the Dentine-Pulp Complex and the Periapical Tissues. Int. J. Mol. Sci. 2021, 22, 1480. [Google Scholar] [CrossRef] [PubMed]
- Sabeti, M.A.; Nikghalb, K.D.; Pakzad, R.; Fouad, A.F. Expression of Selected Inflammatory Mediators with Different Clinical Characteristics of Pulpal Inflammation. J. Endod. 2024, 50, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Khorasani, M.M.Y.; Hassanshahi, G.; Brodzikowska, A.; Khorramdelazad, H. Role(s) of Cytokines in Pulpitis: Latest Evidence and Therapeutic Approaches. Cytokine 2020, 126, 154896. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Li, X.; Liu, L.; Zeng, Y.; Song, D.; Huang, D. The Effect of BMP9 on Inflammation in the Early Stage of Pulpitis. J. Appl. Oral Sci. 2023, 31, e20220313. [Google Scholar] [CrossRef] [PubMed]
- Dogan Buzoglu, H.; Ozcan, M.; Bozdemir, O.; Aydin Akkurt, K.S.; Zeybek, N.D.; Bayazit, Y. Evaluation of Oxidative Stress Cycle in Healthy and Inflamed Dental Pulp Tissue: A Laboratory Investigation. Clin. Oral Investig. 2023, 27, 5913–5923. [Google Scholar] [CrossRef]
- AAE. Position Statement on Vital Pulp Therapy. J. Endod. 2021, 47, 1340–1344. [Google Scholar] [CrossRef]
- Endodontic Diagnosis Clinical Newsletter—American Association of Endodontists. Available online: https://www.aae.org/specialty/newsletter/endodontic-diagnosis/ (accessed on 10 December 2024).
- Wolters, W.J.; Duncan, H.F.; Tomson, P.L.; Karim, I.E.; McKenna, G.; Dorri, M.; Stangvaltaite, L.; van der Sluis, L.W.M. Minimally Invasive Endodontics: A New Diagnostic System for Assessing Pulpitis and Subsequent Treatment Needs. Int. Endod. J. 2017, 50, 825–829. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Zarrabi, A.; Mostafavi, E.; Aref, A.R.; Sethi, G.; Wang, L.; Tergaonkar, V. Non-Coding RNA-Based Regulation of Inflammation. Semin. Immunol. 2022, 59, 101606. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, M.; Syed, N.H.; Rossi-Fedele, G.; Shatriah, I.; Noorani, T.Y. MicroRNA and Their Implications in Dental Pulp Inflammation: Current Trends and Future Perspectives. Odontology 2023, 111, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, T.; Siqueira, E.; Guil, S. Techniques for Investigating lncRNA Transcript Functions in Neurodevelopment. Mol. Psychiatry 2024, 29, 874–890. [Google Scholar] [CrossRef]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef]
- Morgado-Palacin, L.; Brown, J.A.; Martinez, T.F.; Garcia-Pedrero, J.M.; Forouhar, F.; Quinn, S.A.; Reglero, C.; Vaughan, J.; Heydary, Y.H.; Donaldson, C.; et al. The TINCR Ubiquitin-like Microprotein Is a Tumor Suppressor in Squamous Cell Carcinoma. Nat. Commun. 2023, 14, 1328. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Anderson, K.M.; Chang, C.-L.; Makarewich, C.A.; Nelson, B.R.; McAnally, J.R.; Kasaragod, P.; Shelton, J.M.; Liou, J.; Bassel-Duby, R.; et al. A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance. Cell 2015, 160, 595–606. [Google Scholar] [CrossRef]
- Ferrer, J.; Dimitrova, N. Transcription Regulation by Long Non-Coding RNAs: Mechanisms and Disease Relevance. Nat. Rev. Mol. Cell Biol. 2024, 25, 396–415. [Google Scholar] [CrossRef]
- Sweta, S.; Dudnakova, T.; Sudheer, S.; Baker, A.H.; Bhushan, R. Importance of Long Non-Coding RNAs in the Development and Disease of Skeletal Muscle and Cardiovascular Lineages. Front. Cell Dev. Biol. 2019, 7, 228. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Niu, M.; Wang, Y.; Xu, R.; Guo, Y.; Zhang, C. Roles of Long Noncoding RNAs in Human Inflammatory Diseases. Cell Death Discov. 2024, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Chini, A.; Guha, P.; Malladi, V.S.; Guo, Z.; Mandal, S.S. Novel Long Non-Coding RNAs Associated with Inflammation and Macrophage Activation in Human. Sci. Rep. 2023, 13, 4036. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Castillo, M.; Elsayed, A.M.; López-Berestein, G.; Amero, P.; Rodríguez-Aguayo, C. An Overview of the Immune Modulatory Properties of Long Non-Coding RNAs and Their Potential Use as Therapeutic Targets in Cancer. Non-Coding RNA 2023, 9, 70. [Google Scholar] [CrossRef]
- Zeni, P.F.; Mraz, M. LncRNAs in Adaptive Immunity: Role in Physiological and Pathological Conditions. RNA Biol. 2021, 18, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Verwilt, J.; Vromman, M. Current Understandings and Open Hypotheses on Extracellular Circular RNAs. Wiley Interdiscip. Rev. RNA 2024, 15, e1872. [Google Scholar] [CrossRef]
- Son, C.J.; Carnino, J.M.; Lee, H.; Jin, Y. Emerging Roles of Circular RNA in Macrophage Activation and Inflammatory Lung Responses. Cells 2024, 13, 1407. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Yang, Y.; Liu, Z.; Sun, S.; Li, R.; Zhu, H.; Li, T.; Zheng, J.; Li, J.; et al. Circular RNAs in Human Diseases. MedComm 2024, 5, e699. [Google Scholar] [CrossRef]
- Kim, J. Circular RNAs: Novel Players in Cancer Mechanisms and Therapeutic Strategies. Int. J. Mol. Sci. 2024, 25, 10121. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Q.; Hu, J.; Yu, H.; Shen, Y.; Lai, H.; Li, Q.; Zhang, H.; Li, Y.; Fang, Z.; et al. Circular RNA Landscape in Extracellular Vesicles from Human Biofluids. Genome Med. 2024, 16, 126. [Google Scholar] [CrossRef]
- Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA Therapeutics—Challenges and Potential Solutions. Nat. Rev. Drug Discov. 2021, 20, 629–651. [Google Scholar] [CrossRef]
- Badowski, C.; He, B.; Garmire, L.X. Blood-Derived lncRNAs as Biomarkers for Cancer Diagnosis: The Good, the Bad and the Beauty. NPJ Precis. Oncol. 2022, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, K.; Bayraktar, R.; Ferracin, M.; Calin, G.A. Non-Coding RNAs in Disease: From Mechanisms to Therapeutics. Nat. Rev. Genet. 2024, 25, 211–232. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Yang, X.; Zhang, Y.; Liang, Y.; Qiu, X. Elucidating Epigenetic Mechanisms Governing Odontogenic Differentiation in Dental Pulp Stem Cells: An In-Depth Exploration. Front. Cell Dev. Biol. 2024, 12, 1394582. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, K.; Chen, Z.; Wu, B. Noncoding RNAs: New Insights into the Odontogenic Differentiation of Dental Tissue-Derived Mesenchymal Stem Cells. Stem Cell Res. Ther. 2019, 10, 297. [Google Scholar] [CrossRef]
- Suciu, T.-S.; Feștilă, D.; Berindan-Neagoe, I.; Nutu, A.; Armencea, G.; Aghiorghiesei, A.I.; Vulcan, T.; Băciuț, M. Circular RNA-Mediated Regulation of Oral Tissue-Derived Stem Cell Differentiation: Implications for Oral Medicine and Orthodontic Applications. Stem Cell Rev. Rep. 2024, 20, 656–671. [Google Scholar] [CrossRef] [PubMed]
- Jiao, K.; Walsh, L.J.; Ivanovski, S.; Han, P. The Emerging Regulatory Role of Circular RNAs in Periodontal Tissues and Cells. Int. J. Mol. Sci. 2021, 22, 4636. [Google Scholar] [CrossRef]
- Huang, X.; Chen, K. Differential Expression of Long Noncoding RNAs in Normal and Inflamed Human Dental Pulp. J. Endod. 2018, 44, 62–72. [Google Scholar] [CrossRef]
- Xi, X.; Ma, Y.; Xu, Y.; Ogbuehi, A.C.; Liu, X.; Deng, Y.; Xi, J.; Pan, H.; Lin, Q.; Li, B.; et al. The Genetic and Epigenetic Mechanisms Involved in Irreversible Pulp Neural Inflammation. Dis. Markers 2021, 2021, 8831948. [Google Scholar] [CrossRef] [PubMed]
- Lei, F.; Zhang, H.; Xie, X. Comprehensive Analysis of an lncRNA-miRNA-mRNA Competing Endogenous RNA Network in Pulpitis. PeerJ 2019, 7, e7135. [Google Scholar] [CrossRef]
- Liu, L.; Wang, T.; Huang, D.; Song, D. Comprehensive Analysis of Differentially Expressed Genes in Clinically Diagnosed Irreversible Pulpitis by Multiplatform Data Integration Using a Robust Rank Aggregation Approach. J. Endod. 2021, 47, 1365–1375. [Google Scholar] [CrossRef]
- Li, L.; Ge, J. Exosome-derived lncRNA-Ankrd26 Promotes Dental Pulp Restoration by Regulating miR-150-TLR4 Signaling. Mol. Med. Rep. 2022, 25, 152. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Chen, L.; Wu, J.; Lin, Z.; Huang, S. Long Noncoding RNA MEG3 Expressed in Human Dental Pulp Regulates LPS-Induced Inflammation and Odontogenic Differentiation in Pulpitis. Exp. Cell Res. 2021, 400, 112495. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Hu, Z.; Mei, P.; Wu, Y.; Zhu, M. NUTM2A-AS1 Silencing Alleviates LPS-Induced Apoptosis and Inflammation in Dental Pulp Cells through Targeting Let-7c-5p/HMGB1 Axis. Int. Immunopharmacol. 2021, 96, 107497. [Google Scholar] [CrossRef] [PubMed]
- Chen, W. SNHG7 Promotes the Osteo/Dentinogenic Differentiation Ability of Human Dental Pulp Stem Cells by Interacting with Hsa-miR-6512-3p in an Inflammatory Microenvironment. Biochem. Biophys. Res. Commun. 2021, 581, 46–52. [Google Scholar] [CrossRef]
- Gong, W.; Hong, L.; Qian, Y. Identification and Experimental Validation of LINC00582 Associated with B Cell Immune and Development of Pulpitis: Bioinformatics and In Vitro Analysis. Diagnostics 2023, 13, 1678. [Google Scholar] [CrossRef] [PubMed]
- Aria, H.; Azizi, M.; Nazem, S.; Mansoori, B.; Darbeheshti, F.; Niazmand, A.; Daraei, A.; Mansoori, Y. Competing Endogenous RNAs Regulatory Crosstalk Networks: The Messages from the RNA World to Signaling Pathways Directing Cancer Stem Cell Development. Heliyon 2024, 10, e35208. [Google Scholar] [CrossRef]
- Xie, Q.; Yu, H.; Liu, Z.; Zhou, B.; Fang, F.; Qiu, W.; Wu, H. Identification and Characterization of the Ferroptosis-Related ceRNA Network in Irreversible Pulpitis. Front. Immunol. 2023, 14, 1198053. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, Biology and Role in Disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lu, Y.-Q. Ferroptosis: A Critical Moderator in the Life Cycle of Immune Cells. Front. Immunol. 2022, 13, 877634. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Z.; Zhang, Y.; Lian, B.; Ma, L.; Zhao, J. Autophagy Induced by Hypoxia in Pulpitis Is Mediated by HIF-1α/BNIP3. Arch. Oral. Biol. 2024, 159, 105881. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, Q.; Yu, H.; Zhou, B.; Guo, X.; Wu, B.; Hu, J. Establishment and Validation of the Autophagy-Related ceRNA Network in Irreversible Pulpitis. BMC Genom. 2023, 24, 268. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Liu, L.; Yang, F.; Leng, S.; Zhang, L.; Huang, D. Identification of Immune-Related lncRNA Regulatory Network in Pulpitis. Dis. Markers 2022, 2022, 7222092. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Wang, J.; Qi, Y.; Fei, Y.; Wang, D. Long Non-Coding RNA PVT1 Is Involved in the Pathological Mechanism of Pulpitis by Regulating miR-128-3p. Oral Health Prev. Dent. 2022, 20, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hao, G.; Zhuang, M.; Lv, H.; Liu, C.; Su, K. MEG3 LncRNA from Exosomes Released from Cancer-Associated Fibroblasts Enhances Cisplatin Chemoresistance in SCLC via a MiR-15a-5p/CCNE1 Axis. Yonsei Med. J. 2022, 63, 229–240. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Lin, C.; Cui, L.-J.; Deng, T.-Z.; Li, Q.-M.; Chen, F.-Y.; Miao, X.-P. Mechanism of M2 Macrophage-Derived Extracellular Vesicles Carrying lncRNA MEG3 in Inflammatory Responses in Ulcerative Colitis. Bioengineered 2021, 12, 12722–12739. [Google Scholar] [CrossRef]
- Dai, Y.; Xuan, G.; Yin, M. DUXAP8 Promotes LPS-Induced Cell Injury in Pulpitis by Regulating miR-18b-5p/HIF3A. Int. Dent. J. 2023, 73, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Shehta, N.; Kamel, A.E.; Sobhy, E.; Ismail, M.H. Malondialdehyde and Superoxide Dismutase Levels in Patients with Epilepsy: A Case–Control Study. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 51. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, S.; Dao, J.; Gan, Z.; Zeng, X. Differential Expression of lncRNA/miRNA/mRNA and Their Related Functional Networks during the Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells. J. Cell Physiol. 2020, 235, 3350–3361. [Google Scholar] [CrossRef]
- Liu, M.; Jia, W.; Bai, L.; Lin, Q. Dysregulation of lncRNA TFAP2A-AS1 Is Involved in the Pathogenesis of Pulpitis by the Regulation of microRNA-32-5p. Immun. Inflamm. Dis. 2024, 12, e1312. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Zeng, K.; Zhou, C.; Chen, X.; Xu, Z.; Li, M.; Liu, L.; Zeng, Q.; Tao, Q.; Wei, X. The Pluripotent Factor OCT4A Enhances the Self-Renewal of Human Dental Pulp Stem Cells by Targeting lncRNA FTX in an LPS-Induced Inflammatory Microenvironment. Stem Cell Res. Ther. 2023, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Wu, W.; He, X.; Xue, F.; Feng, D. Circ_0138960 Knockdown Alleviates Lipopolysaccharide-Induced Inflammatory Response and Injury in Human Dental Pulp Cells by Targeting miR-545-5p/MYD88 Axis in Pulpitis. J. Dent. Sci. 2023, 18, 191–202. [Google Scholar] [CrossRef]
- Liang, C.; Li, W.; Huang, Q.; Wen, Q. CircFKBP5 Suppresses Apoptosis and Inflammation and Promotes Osteogenic Differentiation. Int. Dent. J. 2023, 73, 377–386. [Google Scholar] [CrossRef]
- Lei, Q.; Liang, Z.; Lei, Q.; Liang, F.; Ma, J.; Wang, Z.; He, S. Analysis of circRNAs Profile in TNF-α Treated DPSC. BMC Oral Health 2022, 22, 269. [Google Scholar] [CrossRef] [PubMed]
- Vaseenon, S.; Weekate, K.; Srisuwan, T.; Chattipakorn, N.; Chattipakorn, S. Observation of Inflammation, Oxidative Stress, Mitochondrial Dynamics, and Apoptosis in Dental Pulp Following a Diagnosis of Irreversible Pulpitis. Eur. Endod. J. 2023, 8, 148–155. [Google Scholar] [CrossRef]
- Zhang, J.; Li, R.; Man, K.; Yang, X.B. Enhancing Osteogenic Potential of hDPSCs by Resveratrol through Reducing Oxidative Stress via the Sirt1/Nrf2 Pathway. Pharm. Biol. 2022, 60, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Li, L.; Du, R.; Jiang, L.; Zhu, Y.-Q. Hydrogen Peroxide Induces Apoptosis in Human Dental Pulp Cells via Caspase-9 Dependent Pathway. J. Endod. 2013, 39, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, D.; Wang, D.; Man, K.; Yang, X. CircRNA Expression Profiles in Human Dental Pulp Stromal Cells Undergoing Oxidative Stress. J. Transl. Med. 2019, 17, 327. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, L.; Jiang, X.; Tang, X. Comprehensive Review for Non-Coding RNAs: From Mechanisms to Therapeutic Applications. Biochem. Pharmacol. 2024, 224, 116218. [Google Scholar] [CrossRef]
- Krivanek, J.; Adameyko, I.; Fried, K. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth. Front. Physiol. 2017, 8, 376. [Google Scholar] [CrossRef]
- Ren, H.; Wen, Q.; Zhao, Q.; Wang, N.; Zhao, Y. Atlas of Human Dental Pulp Cells at Multiple Spatial and Temporal Levels Based on Single-Cell Sequencing Analysis. Front. Physiol. 2022, 13, 993478. [Google Scholar] [CrossRef]
- Pagella, P.; de Vargas Roditi, L.; Stadlinger, B.; Moor, A.E.; Mitsiadis, T.A. A Single-Cell Atlas of Human Teeth. iScience 2021, 24, 102405. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, J.; Ma, L.; Li, X.; Wei, C.; Tian, X.; Liu, K. Identification of the Characteristics of Infiltrating Immune Cells in Pulpitis and Its Potential Molecular Regulation Mechanism by Bioinformatics Method. BMC Oral. Health 2023, 23, 287. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, J.; Qian, H.; Yan, Y.; Xu, W. Exosomal circRNA: Emerging Insights into Cancer Progression and Clinical Application Potential. J. Hematol. Oncol. 2023, 16, 67. [Google Scholar] [CrossRef]
- Grillone, K.; Caridà, G.; Luciano, F.; Cordua, A.; Di Martino, M.T.; Tagliaferri, P.; Tassone, P. A Systematic Review of Non-Coding RNA Therapeutics in Early Clinical Trials: A New Perspective against Cancer. J. Transl. Med. 2024, 22, 731. [Google Scholar] [CrossRef]
- Nappi, F. Non-Coding RNA-Targeted Therapy: A State-of-the-Art Review. Int. J. Mol. Sci. 2024, 25, 3630. [Google Scholar] [CrossRef]
- Bhat, R.; Shetty, S.; Rai, P.; Kumar, B.K.; Shetty, P. Revolutionizing the Diagnosis of Irreversible Pulpitis—Current Strategies and Future Directions. J. Oral Biosci. 2024, 66, 272–280. [Google Scholar] [CrossRef]
- Hu, X.; Qin, H.; Yan, Y.; Wu, W.; Gong, S.; Wang, L.; Jiang, R.; Zhao, Q.; Sun, Y.; Wang, Q.; et al. Exosomal Circular RNAs: Biogenesis, Effect, and Application in Cardiovascular Diseases. Front. Cell Dev. Biol. 2022, 10, 948256. [Google Scholar] [CrossRef]
- Miao, S.; Zhang, Q. Circulating circRNA: A Social Butterfly in Tumors. Front. Oncol. 2023, 13, 1203696. [Google Scholar] [CrossRef]
LncRNA | Analyzed Model | Molecular Mechanism | Biological Effects | Ref. |
---|---|---|---|---|
PVT1 | Increased expression in hDPCs treated with LPS, as well as in pulp and saliva of patients with pulpitis | PVT1 binds miR-128-3p, resulting in reduced expression of this miRNA | PVT1 promotes inflammation, apoptosis and reduction in cell viability | [36,50] |
MEG3 | Increased expression in hDPCs treated with LPS and in pulp of patients with pulpitis | The mechanism was not described; however, MEG3 could modulate the p38/MAPK and Wnt/β-catenin signaling pathways | MEG3 promotes inflammation and negatively regulates osteogenic/odontogenic differentiation | [39] |
NUTM2A-AS1 | Increased expression in hDPCs treated with LPS and in pulp of patients with pulpitis | NUTM2A-AS1 can interact with let-7c-5p and reduce expression of this miRNA, stimulating the expression of HMGB1, since let-7c-5p induces downregulation of HMGB1 | NUTM2A-AS1 promotes inflammation and apoptosis | [40] |
Ankrd26 | Increased expression in rat pulpitis model and expressed in rDPSCs | Ankrd26 binds to miR-150 and reduces miRNA levels, resulting in the increased expression of TLR4, a target of miR-150 | Ankrd26 promotes migration and osteogenic differentiation of MSC | [38] |
DUXAP8 | Increased expression in hDPCs treated with LPS and in pulp of patients with pulpitis | DUXAP8 binds to miR-18b-5p, generating downexpression of this miRNA and increased expression of HIF3A, a target of miR-18b-5p | DUXAP8 promotes inflammation, apoptosis and oxidative stress and negatively regulates cell proliferation | [53] |
SNHG7 | Decreased expression in a differentiation model using hDPSCs treated with TNF-α | SNHG7 interacts with hsa-miR-6512-3p and reduces the expression of this miRNA | SNHG7 promotes osteogenic/odontogenic differentiation | [41] |
TFAP2A-AS1 | Increased expression in hDPSCs treated with LPS and in pulp of patients with pulpitis | TFAP2A-AS1 binds mir-32-5p and reduces the expression of this miRNA | TFAP2A-AS1 promotes inflammation and apoptosis and negatively regulates osteogenic/odontogenic differentiation | [56] |
LINC00582 | Increased expression in pulp of patients with pulpitis. LPS treatment of hDPCs did not modify expression. Analyzed in BALL-1 cell line | The mechanism was not described; LINC00582 does not regulate cell death or inflammation in hDPCs under inflammatory conditions | LINC00582 could regulate inflammatory microenvironment since it promoted migration, proliferation and invasion of a cell line with characteristics of B cells | [42] |
FTX | Analyzed in a differentiation model using hDPSCs treated with LPS | Induced overexpression inhibited the expression of the pluripotent transcription factors OCT4, SOX2 and c-MYC | FXT impairs proliferation as well as odontogenic and adipogenic differentiation | [57] |
CircRNA | ||||
Circ_0138960 | Increased expression in hDPCs treated with LPS and in pulp of patients with pulpitis | Circ_0138960 binds miR-545-5p, decreasing expression of this miRNA and increasing expression of MYD88 | Circ_0138960 reduces proliferation and promotes apoptosis, inflammation and oxidative stress | [58] |
CircFKBP5 | Reduced expression in hDPSCs treated with LPS | CircFKBP5 interacts with miR-708-5p, reducing expression and resulting in increased expression of GIT2 | CircFKBP5 promotes osteogenic/odontogenic differentiation and negatively regulates apoptosis and inflammation | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuchen-Ramos, D.M.; Leija-Montoya, A.G.; González-Ramírez, J.; Isiordia-Espinoza, M.; García-Arévalo, F.; Pitones-Rubio, V.; Olvera-Sandoval, C.; Mateos-Corral, I.; Serafín-Higuera, N. Current Insights into the Roles of LncRNAs and CircRNAs in Pulpitis: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 13603. https://doi.org/10.3390/ijms252413603
Fuchen-Ramos DM, Leija-Montoya AG, González-Ramírez J, Isiordia-Espinoza M, García-Arévalo F, Pitones-Rubio V, Olvera-Sandoval C, Mateos-Corral I, Serafín-Higuera N. Current Insights into the Roles of LncRNAs and CircRNAs in Pulpitis: A Narrative Review. International Journal of Molecular Sciences. 2024; 25(24):13603. https://doi.org/10.3390/ijms252413603
Chicago/Turabian StyleFuchen-Ramos, Dulce Martha, Ana Gabriela Leija-Montoya, Javier González-Ramírez, Mario Isiordia-Espinoza, Fernando García-Arévalo, Viviana Pitones-Rubio, Carlos Olvera-Sandoval, Isis Mateos-Corral, and Nicolás Serafín-Higuera. 2024. "Current Insights into the Roles of LncRNAs and CircRNAs in Pulpitis: A Narrative Review" International Journal of Molecular Sciences 25, no. 24: 13603. https://doi.org/10.3390/ijms252413603
APA StyleFuchen-Ramos, D. M., Leija-Montoya, A. G., González-Ramírez, J., Isiordia-Espinoza, M., García-Arévalo, F., Pitones-Rubio, V., Olvera-Sandoval, C., Mateos-Corral, I., & Serafín-Higuera, N. (2024). Current Insights into the Roles of LncRNAs and CircRNAs in Pulpitis: A Narrative Review. International Journal of Molecular Sciences, 25(24), 13603. https://doi.org/10.3390/ijms252413603