Sex Differences in Depression: Insights from Multimodal Gray Matter Morphology and Peripheral Inflammatory Factors
<p>Brief pipeline for the multimodal metric of GM. (<b>A</b>) Structural-level metric of GM. (<b>B</b>) Microstructural-level metric of GM. Note: GM, gray matter; SBM, surface-based morphometry; VBM, voxel-based morphometry. GBSS, GM-based spatial statistic; MD, mean diffusivity; FA, fractional anisotropy.</p> "> Figure 2
<p>Main effects of MDD diagnosis. The main effect of MDD on cortical thickness (<b>A</b>), GM FA (<b>B</b>), and MD (<b>C</b>). Areas in blue-green indicate regions where the cortical thickness (<b>A</b>) and GM FA (<b>B</b>) are significantly lower in the MDD group compared with HCs regardless of sex. The red-yellow areas are regions where the MD (<b>C</b>) is significantly higher in the MDD group compared with HCs. All statistical significances were determined at <span class="html-italic">p</span> < 0.05 after applying FWE correction for multiple comparisons following TFCE while controlling for age and BMI. Note: MDD, major depressive disorder; GM, gray matter; HC, healthy control; MD, mean diffusivity; FA, fractional anisotropy; TFCE, threshold-free cluster enhancement; FEW, family-wise error rate.</p> "> Figure 3
<p>Sex-by-diagnosis interaction on GMV and cortical thickness. (<b>A</b>) The red-yellow areas indicate a significant sex-by-diagnosis interaction on GMV (<span class="html-italic">p</span> < 0.05 after FWE correction for multiple comparisons following TFCE). (<b>B</b>) Histograms exhibit the validation of region of interest (ROI) analysis in the original individual space for each cluster determined by the interaction of sex and diagnosis on GMV. (<b>C</b>) (<b>Left</b>): The red-yellow areas indicate a significant sex-by-diagnosis interaction on cortical thickness (<span class="html-italic">p</span> < 0.05 after FWE correction for multiple comparisons following TFCE). (<b>Right</b>): The histograms display ROI validation in raw space for each cluster determined by the interaction of sex and diagnosis on cortical thickness. Note: GMV, gray matter volume; Vol<sub>(rel)</sub>, relative volume; MDD, major depressive disorder; HC, healthy control; F, female; M, male.</p> "> Figure 4
<p>The impact of MDD on males. Areas in blue-green indicate regions where the cortical thickness (<b>A</b>) and GMV (<b>B</b>) are significantly decreased in male patients with MDD. (<b>C</b>) The effect of MDD on GM MD in males. Areas in red-yellow indicate regions where GM MD is significantly increased in male patients with MDD. All statistical significances were determined at <span class="html-italic">p</span> < 0.05 after applying FWE correction for multiple comparisons following TFCE while controlling for age and BMI. Note: MDD, major depressive disorder; GM, gray matter; HC, healthy control; MD, mean diffusivity; FA, fractional anisotropy; TFCE, threshold-free cluster enhancement; FEW, family-wise error rate.</p> "> Figure 5
<p>Sex differences in inflammatory factors associated with MDD. Altered plasma concentrations of MMP8 (<b>A</b>), active MMP8 (<b>B</b>), the pro-inflammatory cytokines TNF-α (<b>C</b>), IL-6 (<b>D</b>), and IL-8, and (<b>E</b>) the anti-inflammatory cytokine IL-10 (<b>F</b>) in both male and female individuals diagnosed with MDD while controlling for age and BMI. Significant sex-by-diagnosis interactions were found for IL-8 ((<b>E</b>), <b>right</b>). (<b>G</b>) Correlations between IL-8 and HAMD (<b>left</b>) or BDI (<b>right</b>) in female individuals with MDD, controlling for age and BMI. (<b>H</b>) Correlations between IL-8 and HAMD (<b>left</b>) or BDI (<b>right</b>) in male individuals with MDD, controlling for age and BMI. Note: MMP8, matrix metalloproteinase-8; TNF, tumor necrosis factor; IL, interleukin. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 6
<p>Correlations among inflammation, structural imaging phenotypes, and depression. (<b>A</b>,<b>B</b>) The correlation matrix demonstrates the associations between inflammatory factors and structural imaging phenotypes with sex-by-diagnosis interaction in females (<b>A</b>) and males (<b>B</b>) while controlling for age and BMI. The ellipses in the plot symbolize the correlation between variable pairs. Larger and more elongated ellipses denote stronger correlations, while smaller or circular ones suggest weaker or no correlations. Red, upward-pointing ellipses indicate positive correlations, whereas blue, downward-pointing ones represent negative correlations. Statistically significant correlations are marked with asterisks (<span class="html-italic">p</span> < 0.05). (<b>C</b>–<b>E</b>) Examining the mediating role of Vol_cluster1 in the association between IL-8 and depression across all participants (<b>C</b>), as well as separately for females (<b>D</b>) and males (<b>E</b>). (<b>F</b>–<b>H</b>) Investigating the mediating role of Vol_cluster4 in the relationship between IL-8 and depression among all participants (<b>F</b>), as well as individually for females (<b>G</b>) and males (<b>H</b>). Note: vol, volume; th, thickness. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinical Features
2.2. Effects of MDD and Sex on GM Morphometry
2.3. Interaction Effect of MDD and Sex on GM Morphometry
2.4. Sex-Specific Effect of MDD on GM Morphometry
2.5. Elevated Inflammation and Differential Correlations with Depressive Symptoms in Men and Women with MDD
2.6. Sexually Divergent Inflammation–Brain Correlations in MDD
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Assessment of Inflammation
4.3. MRI Images Acquisition
4.4. Structural Data Processing
4.5. Diffusion Data Processing
4.5.1. Preprocessing
4.5.2. GM-Based Spatial Statistics
4.6. Validation of Sex-by-Diagnosis Interaction
4.7. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrman, H.; Patel, V.; Kieling, C.; Berk, M.; Buchweitz, C.; Cuijpers, P.; Furukawa, T.A.; Kessler, R.C.; Kohrt, B.A.; Maj, M.; et al. Time for United Action on Depression: A Lancet–World Psychiatric Association Commission. Lancet 2022, 399, 957–1022. [Google Scholar] [CrossRef] [PubMed]
- Thapar, A.; Eyre, O.; Patel, V.; Brent, D. Depression in Young People. Lancet 2022, 400, 617–631. [Google Scholar] [CrossRef] [PubMed]
- Eid, R.S.; Gobinath, A.R.; Galea, L.A.M. Sex Differences in Depression: Insights from Clinical and Preclinical Studies. Prog. Neurobiol. 2019, 176, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Seyedmirzaei, H.; Salehi, M.A.; Jahanshahi, A.; Zakavi, S.S.; Dehghani Firouzabadi, F.; Yousem, D.M. Brain-Based Sex Differences in Depression: A Systematic Review of Neuroimaging Studies. Brain Imaging Behav. 2023, 17, 541–569. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Cuarenta, A. Sex Differences in Anxiety and Depression: Circuits and Mechanisms. Nat. Rev. Neurosci. 2021, 22, 674–684. [Google Scholar] [CrossRef]
- Kruse, J.L.; Olmstead, R.; Hellemann, G.; Wade, B.; Jiang, J.; Vasavada, M.M.; Brooks, J.O.; Congdon, E.; Espinoza, R.; Narr, K.L.; et al. Inflammation and Depression Treatment Response to Electroconvulsive Therapy: Sex-Specific Role of Interleukin-8. Brain Behav. Immun. 2020, 89, 59–66. [Google Scholar] [CrossRef]
- Dong, D.; Pizzagalli, D.A.; Bolton, T.A.W.; Ironside, M.; Zhang, X.; Li, C.; Sun, X.; Xiong, G.; Cheng, C.; Wang, X.; et al. Sex-Specific Resting State Brain Network Dynamics in Patients with Major Depressive Disorder. Neuropsychopharmacology 2024, 49, 806–813. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, L.; Liang, K.; Cao, L.; Liu, J.; Li, H.; Gao, Y.; Hu, X.; Hu, Y.; Kuang, W.; et al. Sex-Specific Alterations of Cortical Morphometry in Treatment-Naïve Patients with Major Depressive Disorder. Neuropsychopharmacology 2022, 47, 2002–2009. [Google Scholar] [CrossRef]
- Carlson, J.M.; Depetro, E.; Maxwell, J.; Harmon-Jones, E.; Hajcak, G. Gender Moderates the Association between Dorsal Medial Prefrontal Cortex Volume and Depressive Symptoms in a Subclinical Sample. Psychiatry Res. 2015, 233, 285–288. [Google Scholar] [CrossRef]
- Antonenko, D.; Fromm, A.E.; Thams, F.; Grittner, U.; Meinzer, M.; Flöel, A. Microstructural and Functional Plasticity Following Repeated Brain Stimulation during Cognitive Training in Older Adults. Nat. Commun. 2023, 14, 3184. [Google Scholar] [CrossRef]
- Silva-Rudberg, J.A.; Salardini, E.; O’Dell, R.S.; Chen, M.-K.; Ra, J.; Georgelos, J.K.; Morehouse, M.R.; Melino, K.P.; Varma, P.; Toyonaga, T.; et al. Assessment of Gray Matter Microstructure and Synaptic Density in Alzheimer’s Disease: A Multimodal Imaging Study With DTI and SV2A PET. Am. J. Geriatr. Psychiatry 2024, 32, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Lyon, M.; Welton, T.; Varda, A.; Maller, J.J.; Broadhouse, K.; Korgaonkar, M.S.; Koslow, S.H.; Williams, L.M.; Gordon, E.; Rush, A.J.; et al. Gender-Specific Structural Abnormalities in Major Depressive Disorder Revealed by Fixel-Based Analysis. Neuroimage Clin. 2019, 21, 101668. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.C.; Sisk, L.M.; Kulla, A.; Teresi, G.I.; Hansen, M.M.; Wu, H.; Gotlib, I.H. Sex Differences in Myelin Content of White Matter Tracts in Adolescents with Depression. Neuropsychopharmacology 2021, 46, 2295–2303. [Google Scholar] [CrossRef] [PubMed]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Harrison, N.A.; Brydon, L.; Walker, C.; Gray, M.A.; Steptoe, A.; Critchley, H.D. Inflammation Causes Mood Changes through Alterations in Subgenual Cingulate Activity and Mesolimbic Connectivity. Biol. Psychiatry 2009, 66, 407–414. [Google Scholar] [CrossRef]
- Van Lint, P.; Libert, C. Matrix Metalloproteinase-8: Cleavage Can Be Decisive. Cytokine Growth Factor. Rev. 2006, 17, 217–223. [Google Scholar] [CrossRef]
- Cathomas, F.; Lin, H.-Y.; Chan, K.L.; Li, L.; Parise, L.F.; Alvarez, J.; Durand-de Cuttoli, R.; Aubry, A.V.; Muhareb, S.; Desland, F.; et al. Circulating Myeloid-Derived MMP8 in Stress Susceptibility and Depression. Nature 2024, 626, 1108–1115. [Google Scholar] [CrossRef]
- Spengler, D.; Rein, T. Peripheral Immune Cell-Derived Matrix Metalloprotease 8 (MMP8): Brain Trafficking Promotes Depression-like Behavior. Signal Transduct. Target. Ther. 2024, 9, 136. [Google Scholar] [CrossRef]
- Drevets, W.C.; Wittenberg, G.M.; Bullmore, E.T.; Manji, H.K. Immune Targets for Therapeutic Development in Depression: Towards Precision Medicine. Nat. Rev. Drug Discov. 2022, 21, 224–244. [Google Scholar] [CrossRef]
- Green, C.; Shen, X.; Stevenson, A.J.; Conole, E.L.S.; Harris, M.A.; Barbu, M.C.; Hawkins, E.L.; Adams, M.J.; Hillary, R.F.; Lawrie, S.M.; et al. Structural Brain Correlates of Serum and Epigenetic Markers of Inflammation in Major Depressive Disorder. Brain Behav. Immun. 2021, 92, 39–48. [Google Scholar] [CrossRef]
- Kitzbichler, M.G.; Aruldass, A.R.; Barker, G.J.; Wood, T.C.; Dowell, N.G.; Hurley, S.A.; McLean, J.; Correia, M.; Clarke, C.; Pointon, L.; et al. Peripheral Inflammation Is Associated with Micro-Structural and Functional Connectivity Changes in Depression-Related Brain Networks. Mol. Psychiatry 2021, 26, 7346–7354. [Google Scholar] [CrossRef] [PubMed]
- Saccaro, L.F.; Tassone, M.; Tozzi, F.; Rutigliano, G. Proton Magnetic Resonance Spectroscopy of N-Acetyl Aspartate in First Depressive Episode and Chronic Major Depressive Disorder: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2024, 355, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Triarhou, L.C. Cytoarchitectonics of the Rolandic Operculum: Morphofunctional Ponderings. Brain Struct. Funct. 2021, 226, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Groen, W. Pervasive Microstructural Abnormalities in Autism: A DTI Study. J. Psychiatry Neurosci. 2011, 36, 32–40. [Google Scholar] [CrossRef]
- Jonkman, L.E.; Klaver, R.; Fleysher, L.; Inglese, M.; Geurts, J.J. The Substrate of Increased Cortical FA in MS: A 7T Post-Mortem MRI and Histopathology Study. Mult. Scler. J. 2016, 22, 1804–1811. [Google Scholar] [CrossRef]
- Sikes-Keilp, C.; Rubinow, D.R. In Search of Sex-Related Mediators of Affective Illness. Biol. Sex. Differ. 2021, 12, 55. [Google Scholar] [CrossRef]
- Frey, B.N.; Skelin, I.; Sakai, Y.; Nishikawa, M.; Diksic, M. Gender Differences in α-[11C]MTrp Brain Trapping, an Index of Serotonin Synthesis, in Medication-Free Individuals with Major Depressive Disorder: A Positron Emission Tomography Study. Psychiatry Res. Neuroimaging 2010, 183, 157–166. [Google Scholar] [CrossRef]
- Piani, M.C.; Maggioni, E.; Delvecchio, G.; Ferro, A.; Gritti, D.; Pozzoli, S.M.; Fontana, E.; Enrico, P.; Cinnante, C.M.; Triulzi, F.M.; et al. Sexual Dimorphism in the Brain Correlates of Adult-Onset Depression: A Pilot Structural and Functional 3T MRI Study. Front. Psychiatry 2021, 12, 683912. [Google Scholar] [CrossRef]
- Talishinsky, A.; Downar, J.; Vértes, P.E.; Seidlitz, J.; Dunlop, K.; Lynch, C.J.; Whalley, H.; McIntosh, A.; Vila-Rodriguez, F.; Daskalakis, Z.J.; et al. Regional Gene Expression Signatures Are Associated with Sex-Specific Functional Connectivity Changes in Depression. Nat. Commun. 2022, 13, 5692. [Google Scholar] [CrossRef]
- Brown, S.J.; Christofides, K.; Weissleder, C.; Huang, X.-F.; Shannon Weickert, C.; Lim, C.K.; Newell, K.A. Sex- and Suicide-Specific Alterations in the Kynurenine Pathway in the Anterior Cingulate Cortex in Major Depression. Neuropsychopharmacology 2024, 49, 584–592. [Google Scholar] [CrossRef]
- Fries, G.R.; Saldana, V.A.; Finnstein, J.; Rein, T. Molecular Pathways of Major Depressive Disorder Converge on the Synapse. Mol. Psychiatry 2023, 28, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, J.L. Uncovering Microglial Pathways Driving Sex-Specific Neurobiological Effects in Stress and Depression. Brain Behav. Immun. Health 2021, 16, 100320. [Google Scholar] [CrossRef] [PubMed]
- Seney, M.L.; Glausier, J.; Sibille, E. Large-Scale Transcriptomics Studies Provide Insight Into Sex Differences in Depression. Biol. Psychiatry 2022, 91, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, J.L.; Bergeon Burns, C.M.; Wellman, C.L. Differential Effects of Stress on Microglial Cell Activation in Male and Female Medial Prefrontal Cortex. Brain Behav. Immun. 2016, 52, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Labonté, B.; Engmann, O.; Purushothaman, I.; Menard, C.; Wang, J.; Tan, C.; Scarpa, J.R.; Moy, G.; Loh, Y.H.E.; Cahill, M.; et al. Sex-Specific Transcriptional Signatures in Human Depression. Nat. Med. 2017, 23, 1102–1111. [Google Scholar] [CrossRef]
- Seney, M.L.; Huo, Z.; Cahill, K.; French, L.; Puralewski, R.; Zhang, J.; Logan, R.W.; Tseng, G.; Lewis, D.A.; Sibille, E. Opposite Molecular Signatures of Depression in Men and Women. Biol. Psychiatry 2018, 84, 18–27. [Google Scholar] [CrossRef]
- Maitra, M.; Mitsuhashi, H.; Rahimian, R.; Chawla, A.; Yang, J.; Fiori, L.M.; Davoli, M.A.; Perlman, K.; Aouabed, Z.; Mash, D.C.; et al. Cell Type Specific Transcriptomic Differences in Depression Show Similar Patterns between Males and Females but Implicate Distinct Cell Types and Genes. Nat. Commun. 2023, 14, 2912. [Google Scholar] [CrossRef]
- Carvalho Silva, R.; Pisanu, C.; Maffioletti, E.; Menesello, V.; Bortolomasi, M.; Gennarelli, M.; Baune, B.T.; Squassina, A.; Minelli, A. Biological Markers of Sex-Based Differences in Major Depressive Disorder and in Antidepressant Response. Eur. Neuropsychopharmacol. 2023, 76, 89–107. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Kritchevsky, S.B.; Yaffe, K.; Newman, A.B.; Simonsick, E.M.; Rubin, S.; Ferrucci, L.; Harris, T.; Pahor, M. Inflammatory Markers and Depressed Mood in Older Persons: Results from the Health, Aging and Body Composition Study. Biol. Psychiatry 2003, 54, 566–572. [Google Scholar] [CrossRef]
- Elovainio, M.; Aalto, A.-M.; Kivimäki, M.; Pirkola, S.; Sundvall, J.; Lönnqvist, J.; Reunanen, A. Depression and C-Reactive Protein: Population-Based Health 2000 Study. Psychosom. Med. 2009, 71, 423–430. [Google Scholar] [CrossRef]
- Kruse, J.L.; Vasavada, M.M.; Olmstead, R.; Hellemann, G.; Wade, B.; Breen, E.C.; Brooks, J.O.; Congdon, E.; Espinoza, R.; Narr, K.L.; et al. Depression Treatment Response to Ketamine: Sex-Specific Role of Interleukin-8, but Not Other Inflammatory Markers. Transl. Psychiatry 2021, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Janelidze, S.; Suchankova, P.; Ekman, A.; Erhardt, S.; Sellgren, C.; Samuelsson, M.; Westrin, A.; Minthon, L.; Hansson, O.; Träskman-Bendz, L.; et al. Low IL-8 Is Associated with Anxiety in Suicidal Patients: Genetic Variation and Decreased Protein Levels. Acta Psychiatr. Scand. 2015, 131, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhu, Z.H.; Li, R.H.; Yin, X.Y.; Chen, R.F.; Man, L.J.; Hou, W.L.; Zhu, H.L.; Wang, J.; Zhang, H.; et al. Association between Increased Serum Interleukin-8 Levels and Improved Cognition in Major Depressive Patients with SSRIs. BMC Psychiatry 2023, 23, 122. [Google Scholar] [CrossRef] [PubMed]
- Kuzior, H.; Fiebich, B.L.; Yousif, N.M.; Saliba, S.W.; Ziegler, C.; Nickel, K.; Maier, S.J.; Süß, P.; Runge, K.; Matysik, M.; et al. Increased IL-8 Concentrations in the Cerebrospinal Fluid of Patients with Unipolar Depression. Compr. Psychiatry 2020, 102, 152196. [Google Scholar] [CrossRef]
- Aminoff, E.M.; Kveraga, K.; Bar, M. The Role of the Parahippocampal Cortex in Cognition. Trends Cogn. Sci. 2013, 17, 379–390. [Google Scholar] [CrossRef]
- Rosa, A.R.; Bücker, J. Sex Representation in Mental Health Research. Eur. Neuropsychopharmacol. 2024, 85, 21–22. [Google Scholar] [CrossRef]
- Herreen, D.; Rice, S.; Zajac, I. Brief Assessment of Male Depression in Clinical Care: Validation of the Male Depression Risk Scale Short Form in a Cross-Sectional Study of Australian Men. BMJ Open 2022, 12, e053650. [Google Scholar] [CrossRef]
- Medina-Rodriguez, E.M.; Rice, K.C.; Jope, R.S.; Beurel, E. Comparison of Inflammatory and Behavioral Responses to Chronic Stress in Female and Male Mice. Brain Behav. Immun. 2022, 106, 180–197. [Google Scholar] [CrossRef]
- Shi, P.; Yang, A.; Zhao, Q.; Chen, Z.; Ren, X.; Dai, Q. A Hypothesis of Gender Differences in Self-Reporting Symptom of Depression: Implications to Solve Under-Diagnosis and Under-Treatment of Depression in Males. Front. Psychiatry 2021, 12, 589687. [Google Scholar] [CrossRef]
- Seidler, Z.E.; Dawes, A.J.; Rice, S.M.; Oliffe, J.L.; Dhillon, H.M. The Role of Masculinity in Men’s Help-Seeking for Depression: A Systematic Review. Clin. Psychol. Rev. 2016, 49, 106–118. [Google Scholar] [CrossRef]
- Østergaard, S.D.; Seidler, Z.; Rice, S. The ICD-11 Opens the Door for Overdue Improved Identification of Depression in Men. World Psychiatry 2023, 22, 480–481. [Google Scholar] [CrossRef] [PubMed]
- Oliffe, J.L.; Rossnagel, E.; Seidler, Z.E.; Kealy, D.; Ogrodniczuk, J.S.; Rice, S.M. Men’s Depression and Suicide. Curr. Psychiatry Rep. 2019, 21, 103. [Google Scholar] [CrossRef] [PubMed]
- Palombo, M.; Ianus, A.; Guerreri, M.; Nunes, D.; Alexander, D.C.; Shemesh, N.; Zhang, H. SANDI: A Compartment-Based Model for Non-Invasive Apparent Soma and Neurite Imaging by Diffusion MRI. Neuroimage 2020, 215, 116835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Schneider, T.; Wheeler-Kingshott, C.A.; Alexander, D.C. NODDI: Practical in Vivo Neurite Orientation Dispersion and Density Imaging of the Human Brain. Neuroimage 2012, 61, 1000–1016. [Google Scholar] [CrossRef]
- Baranger, D.A.A.; Halchenko, Y.O.; Satz, S.; Ragozzino, R.; Iyengar, S.; Swartz, H.A.; Manelis, A. Aberrant Levels of Cortical Myelin Distinguish Individuals with Depressive Disorders from Healthy Controls. Neuroimage Clin. 2021, 32, 102790. [Google Scholar] [CrossRef]
- Lepping, R.J.; Atchley, R.A.; Chrysikou, E.; Martin, L.E.; Clair, A.A.; Ingram, R.E.; Simmons, W.K.; Savage, C.R. Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression. PLoS ONE 2016, 11, e0156859. [Google Scholar] [CrossRef]
- Mongan, D.; Raj Susai, S.; Föcking, M.; Byrne, J.F.; Zammit, S.; Cannon, M.; Cotter, D.R. Associations between Plasma Inflammatory Markers and Psychotic Disorder, Depressive Disorder and Generalised Anxiety Disorder in Early Adulthood: A Nested Case-Control Study. Brain Behav. Immun. 2023, 111, 90–100. [Google Scholar] [CrossRef]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef]
- Ashburner, J.; Friston, K.J. Unified Segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef]
- Ashburner, J.; Friston, K.J. Diffeomorphic Registration Using Geodesic Shooting and Gauss–Newton Optimisation. Neuroimage 2011, 55, 954–967. [Google Scholar] [CrossRef]
- Dahnke, R.; Yotter, R.A.; Gaser, C. Cortical Thickness and Central Surface Estimation. Neuroimage 2013, 65, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Cruces, R.R.; Royer, J.; Herholz, P.; Larivière, S.; Vos de Wael, R.; Paquola, C.; Benkarim, O.; Park, B.Y.; Degré-Pelletier, J.; Nelson, M.C.; et al. Micapipe: A Pipeline for Multimodal Neuroimaging and Connectome Analysis. Neuroimage 2022, 263, 119612. [Google Scholar] [CrossRef] [PubMed]
- Avants, B.B.; Tustison, N.J.; Song, G.; Cook, P.A.; Klein, A.; Gee, J.C. A Reproducible Evaluation of ANTs Similarity Metric Performance in Brain Image Registration. Neuroimage 2011, 54, 2033–2044. [Google Scholar] [CrossRef] [PubMed]
- Nazeri, A.; Mulsant, B.H.; Rajji, T.K.; Levesque, M.L.; Pipitone, J.; Stefanik, L.; Shahab, S.; Roostaei, T.; Wheeler, A.L.; Chavez, S.; et al. Gray Matter Neuritic Microstructure Deficits in Schizophrenia and Bipolar Disorder. Biol. Psychiatry 2017, 82, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Ball, G.; Srinivasan, L.; Aljabar, P.; Counsell, S.J.; Durighel, G.; Hajnal, J.V.; Rutherford, M.A.; Edwards, A.D. Development of Cortical Microstructure in the Preterm Human Brain. Proc. Natl. Acad. Sci. USA 2013, 110, 9541–9546. [Google Scholar] [CrossRef]
MDD, n = 174 | HC, n = 133 | |||||
---|---|---|---|---|---|---|
Female, n = 94 | Male, n = 80 | t/χ2 (p) | Female, n = 75 | Male, n = 58 | t/χ2 (p) | |
Age (years) | 24.14 ± 5.20 | 23.71 ± 4.56 | 0.67 (0.91) | 24.08 ± 2.94 | 24.24 ± 2.84 | 0.22 (1.00) |
BMI (kg/m2) | 21.45 ± 3.72 | 23.94 ± 4.60 | −4.38 (<0.001) | 20.34 ± 3.46 | 22.77 ± 2.60 | −3.73 (<0.001) |
HAMD-17 | 28.93 ± 6.49 | 25.50 ± 5.52 | 4.46 (<0.001) | 2.29 ± 3.00 | 3.28 ± 3.64 | −1.12 (0.68) |
BDI-II | 37.16 ± 9.17 | 32.09 ± 10.15 | 4.27 (<0.001) | 2.83 ± 3.74 | 4.76 ± 5.15 | −1.41 (0.50) |
TIV (cm3) | 1456.19 ± 112.41 | 1629.09 ± 148.81 | −8.9 (<0.001) | 1479.83 ± 114.54 | 1649.56 ± 136.24 | −7.60 (<0.001) |
Family history of mental illness (yes/no) | 13/81 | 9/71 | 0.26 (0.61) | 1/74 | 0/58 | 0.78 (0.38) |
Self-injury behavior (yes/no) | 48/46 | 28/52 | 4.53 (0.03) | 2/73 | 0/58 | 1.54 (0.21) |
Suicidal ideation (yes/no) | 80/14 | 70/10 | 0.12 (0.65) | 3/72 | 5/53 | 1.24 (0.27) |
Suicidal attempts (yes/no) | 23/71 | 21/59 | 0.07 (0.79) | 0/75 | 0/58 | - |
Childhood trauma (yes/no) | 23/71 | 18/62 | 0.09 (0.76) | 1/74 | 2/56 | 0.66 (0.42) |
Drink (yes/no) | 29/65 | 28/52 | 0.34 (0.56) | 4/71 | 20/38 | 18.79 (<0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liang, W.; Sun, C.; Liu, S. Sex Differences in Depression: Insights from Multimodal Gray Matter Morphology and Peripheral Inflammatory Factors. Int. J. Mol. Sci. 2024, 25, 13412. https://doi.org/10.3390/ijms252413412
Wang W, Liang W, Sun C, Liu S. Sex Differences in Depression: Insights from Multimodal Gray Matter Morphology and Peripheral Inflammatory Factors. International Journal of Molecular Sciences. 2024; 25(24):13412. https://doi.org/10.3390/ijms252413412
Chicago/Turabian StyleWang, Wenjun, Wenjia Liang, Chenxi Sun, and Shuwei Liu. 2024. "Sex Differences in Depression: Insights from Multimodal Gray Matter Morphology and Peripheral Inflammatory Factors" International Journal of Molecular Sciences 25, no. 24: 13412. https://doi.org/10.3390/ijms252413412
APA StyleWang, W., Liang, W., Sun, C., & Liu, S. (2024). Sex Differences in Depression: Insights from Multimodal Gray Matter Morphology and Peripheral Inflammatory Factors. International Journal of Molecular Sciences, 25(24), 13412. https://doi.org/10.3390/ijms252413412