Whole-Exome Sequencing, Mutational Signature Analysis, and Outcome in Multiple Myeloma—A Pilot Study
<p>Oncoplot displaying potential driver genes inferred by MutSigCV (<span class="html-italic">p</span> < 0.001, <span class="html-italic">n</span> = 35). Bar plots refer to individual tumor burden (upper bar plot in mutations per megabase), −<span class="html-italic">log</span><sub>10</sub> <span class="html-italic">p</span> values retrieved from MutSigCV (<b>left</b>), and the number of samples harboring mutations in a given gene (<b>right</b>). Different classes of mutations are color-coded, and additional covariates are shown below (Revised International Scoring System (R-ISS)).</p> "> Figure 2
<p>Oncogenic pathways are affected by mutations found in the cohort. (<b>A</b>) Heatmap showing the individual sample contributions to affected pathways and the frequency of affected pathways in percentage; (<b>B</b>) bar graphs showing the fraction of genes mutated in a particular pathway.</p> "> Figure 3
<p>Somatic interactions between mutated genes selected by MutSigCV (<span class="html-italic">p</span> < 0.001). Higher co-occurrence of gene mutations is shown in red, while blue refers to mutually exclusive mutations. Gene names on the left and upper side with the number of affected patients in the cohort; <span class="html-italic">p</span>-values for statistical significance marked with (<span class="html-italic">p</span> < 0.05) or * (<span class="html-italic">p</span> < 0.01).</p> "> Figure 4
<p>COSMIC single-base substitution (SBS) signatures found in the analyzed cohort. Bar graphs show the color-coded proportion of somatic signatures per individual sample.</p> "> Figure 5
<p>Kaplan–Meier curve differences in progression-free survival with mutational status of <span class="html-italic">KRAS</span>.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of the Study Group
2.2. Mutational Landscape of Multiple Myeloma Identified by Whole Exome Sequencing
2.3. Potential Driver Genes and Affected Pathways
2.4. Analysis of Somatic Signatures
2.5. Correlation of Somatic Signatures, Patient Characteristics, Progression-Free Survival (PFS), and Overall Survival (OS)
3. Discussion
4. Methods
4.1. Case Selection, Extraction of Nucleic Acids, and Whole-Exome Sequencing
4.2. Sequencing Data Processing, Variant Calling, and Filtering
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Multiple Myeloma: 2022 Update on Diagnosis, Risk-Stratification and Management. Am. J. Hematol. 2022, 97, 1086–1107. [Google Scholar] [CrossRef]
- Huang, J.; Chan, S.C.; Lok, V.; Zhang, L.; Lucero-Prisno, D.E.; Xu, W.; Zheng, Z.-J.; Elcarte, E.; Withers, M.; Wong, M.C.S. The Epidemiological Landscape of Multiple Myeloma: A Global Cancer Registry Estimate of Disease Burden, Risk Factors, and Temporal Trends. Lancet Haematol. 2022, 9, e670–e677. [Google Scholar] [CrossRef]
- Landgren, O.; Kyle, R.A.; Pfeiffer, R.M.; Katzmann, J.A.; Caporaso, N.E.; Hayes, R.B.; Dispenzieri, A.; Kumar, S.; Clark, R.J.; Baris, D.; et al. Monoclonal Gammopathy of Undetermined Significance (MGUS) Consistently Precedes Multiple Myeloma: A Prospective Study. Blood 2009, 113, 5412–5417. [Google Scholar] [CrossRef] [PubMed]
- Weiss, B.M.; Abadie, J.; Verma, P.; Howard, R.S.; Kuehl, W.M. A Monoclonal Gammopathy Precedes Multiple Myeloma in Most Patients. Blood 2009, 113, 5418–5422. [Google Scholar] [CrossRef] [PubMed]
- Zingone, A.; Kuehl, W.M. Pathogenesis of Monoclonal Gammopathy of Undetermined Significance and Progression to Multiple Myeloma. Semin. Hematol. 2011, 48, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Landgren, O.; Mateos, M.-V. Smoldering Multiple Myeloma. Blood 2015, 125, 3069–3075. [Google Scholar] [CrossRef]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- Branagan, A.; Lei, M.; Lou, U.; Raje, N. Current Treatment Strategies for Multiple Myeloma. JCO Oncol. Pract. 2020, 16, 5–14. [Google Scholar] [CrossRef]
- Bolli, N.; Biancon, G.; Moarii, M.; Gimondi, S.; Li, Y.; de Philippis, C.; Maura, F.; Sathiaseelan, V.; Tai, Y.-T.; Mudie, L.; et al. Analysis of the Genomic Landscape of Multiple Myeloma Highlights Novel Prognostic Markers and Disease Subgroups. Leukemia 2018, 32, 2604–2616. [Google Scholar] [CrossRef] [PubMed]
- Oben, B.; Froyen, G.; Maclachlan, K.H.; Leongamornlert, D.; Abascal, F.; Zheng-Lin, B.; Yellapantula, V.; Derkach, A.; Geerdens, E.; Diamond, B.T.; et al. Whole-Genome Sequencing Reveals Progressive versus Stable Myeloma Precursor Conditions as Two Distinct Entities. Nat. Commun. 2021, 12, 1861. [Google Scholar] [CrossRef] [PubMed]
- Zátopková, M.; Ševčíková, T.; Fanfani, V.; Chyra, Z.; Říhová, L.; Bezděková, R.; Žihala, D.; Growková, K.; Filipová, J.; Černá, L.; et al. Mutation Landscape of Multiple Myeloma Measurable Residual Disease: Identification of Targets for Precision Medicine. Blood Adv. 2022, 6, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Manier, S.; Salem, K.Z.; Park, J.; Landau, D.A.; Getz, G.; Ghobrial, I.M. Genomic Complexity of Multiple Myeloma and Its Clinical Implications. Nat. Rev. Clin. Oncol. 2017, 14, 100–113. [Google Scholar] [CrossRef]
- Davies, H.; Morganella, S.; Purdie, C.A.; Jang, S.J.; Borgen, E.; Russnes, H.; Glodzik, D.; Zou, X.; Viari, A.; Richardson, A.L.; et al. Whole-Genome Sequencing Reveals Breast Cancers with Mismatch Repair Deficiency. Cancer Res. 2017, 77, 4755–4762. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.A.; Wardell, C.P.; Murison, A.; Boyle, E.M.; Begum, D.B.; Dahir, N.M.; Proszek, P.Z.; Melchor, L.; Pawlyn, C.; Kaiser, M.F.; et al. APOBEC Family Mutational Signatures Are Associated with Poor Prognosis Translocations in Multiple Myeloma. Nat. Commun. 2015, 6, 6997. [Google Scholar] [CrossRef] [PubMed]
- Maura, F.; Petljak, M.; Lionetti, M.; Cifola, I.; Liang, W.; Pinatel, E.; Alexandrov, L.B.; Fullam, A.; Martincorena, I.; Dawson, K.J.; et al. Biological and Prognostic Impact of APOBEC-Induced Mutations in the Spectrum of Plasma Cell Dyscrasias and Multiple Myeloma Cell Lines. Leukemia 2018, 32, 1043–1047. [Google Scholar] [CrossRef]
- Maura, F.; Degasperi, A.; Nadeu, F.; Leongamornlert, D.; Davies, H.; Moore, L.; Royo, R.; Ziccheddu, B.; Puente, X.S.; Avet-Loiseau, H.; et al. A Practical Guide for Mutational Signature Analysis in Hematological Malignancies. Nat. Commun. 2019, 10, 2969. [Google Scholar] [CrossRef]
- Samur, M.K.; Aktas Samur, A.; Fulciniti, M.; Szalat, R.; Han, T.; Shammas, M.; Richardson, P.; Magrangeas, F.; Minvielle, S.; Corre, J.; et al. Genome-Wide Somatic Alterations in Multiple Myeloma Reveal a Superior Outcome Group. J. Clin. Oncol. 2020, 38, 3107–3118. [Google Scholar] [CrossRef] [PubMed]
- Cardona-Benavides, I.J.; De Ramón, C.; Gutiérrez, N.C. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells 2021, 10, 336. [Google Scholar] [CrossRef]
- Dyer, M.A.; Qadeer, Z.A.; Valle-Garcia, D.; Bernstein, E. ATRX and DAXX: Mechanisms and Mutations. Cold Spring Harb. Perspect. Med. 2017, 7, a026567. [Google Scholar] [CrossRef]
- Sun, J.; Thingholm, T.; Højrup, P.; Rönnstrand, L. XK-Related Protein 5 (XKR5) Is a Novel Negative Regulator of KIT/D816V-Mediated Transformation. Oncogenesis 2018, 7, 48. [Google Scholar] [CrossRef]
- Ruff, S.E.; Logan, S.K.; Garabedian, M.J.; Huang, T.T. Roles for MDC1 in Cancer Development and Treatment. DNA Repair 2020, 95, 102948. [Google Scholar] [CrossRef]
- Lazaratos, A.-M.; Annis, M.G.; Siegel, P.M. GPNMB: A Potent Inducer of Immunosuppression in Cancer. Oncogene 2022, 41, 4573–4590. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.; Xie, Y.; Jiang, H.; Guo, J.; Wang, Y.; Peng, Z.; Hu, M.; Wang, M.; Wang, J.; et al. Deacetylation Induced Nuclear Condensation of HP1γ Promotes Multiple Myeloma Drug Resistance. Nat. Commun. 2023, 14, 1290. [Google Scholar] [CrossRef]
- Chapman, M.A.; Lawrence, M.S.; Keats, J.J.; Cibulskis, K.; Sougnez, C.; Schinzel, A.C.; Harview, C.L.; Brunet, J.-P.; Ahmann, G.J.; Adli, M.; et al. Initial Genome Sequencing and Analysis of Multiple Myeloma. Nature 2011, 471, 467–472. [Google Scholar] [CrossRef]
- Lohr, J.G.; Stojanov, P.; Carter, S.L.; Cruz-Gordillo, P.; Lawrence, M.S.; Auclair, D.; Sougnez, C.; Knoechel, B.; Gould, J.; Saksena, G.; et al. Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy. Cancer Cell 2014, 25, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Kortüm, K.M.; Mai, E.K.; Hanafiah, N.H.; Shi, C.-X.; Zhu, Y.-X.; Bruins, L.; Barrio, S.; Jedlowski, P.; Merz, M.; Xu, J.; et al. Targeted Sequencing of Refractory Myeloma Reveals a High Incidence of Mutations in CRBN and Ras Pathway Genes. Blood 2016, 128, 1226–1233. [Google Scholar] [CrossRef]
- Sabol, H.M.; Delgado-Calle, J. The Multifunctional Role of Notch Signaling in Multiple Myeloma. J. Cancer Metastasis Treat. 2021, 7, 20. [Google Scholar] [CrossRef]
- Kyriazoglou, A.; Ntanasis-Stathopoulos, I.; Terpos, E.; Fotiou, D.; Kastritis, E.; Dimopoulos, M.A.; Gavriatopoulou, M. Emerging Insights Into the Role of the Hippo Pathway in Multiple Myeloma and Associated Bone Disease. Clin. Lymphoma Myeloma Leuk. 2020, 20, 57–62. [Google Scholar] [CrossRef]
- Spaan, I.; Raymakers, R.A.; Van De Stolpe, A.; Peperzak, V. Wnt Signaling in Multiple Myeloma: A Central Player in Disease with Therapeutic Potential. J. Hematol. Oncol. 2018, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, V.; Kumar, S. PI3K/AKT/mTOR Pathway in Multiple Myeloma: From Basic Biology to Clinical Promise. Leuk. Lymphoma 2018, 59, 2524–2534. [Google Scholar] [CrossRef]
- Yen, C.-H.; Hsu, C.-M.; Hsiao, S.Y.; Hsiao, H.-H. Pathogenic Mechanisms of Myeloma Bone Disease and Possible Roles for NRF2. Int. J. Mol. Sci. 2020, 21, 6723. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Qu, Y.; Wang, M.; Chu, B.; Chen, W.; Zheng, Y.; Niu, T.; Qian, Z. Pathogenesis and Treatment of Multiple Myeloma. MedComm 2022, 3, e146. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Tian Ng, A.W.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The Repertoire of Mutational Signatures in Human Cancer. Nature 2020, 578, 94–101. [Google Scholar] [CrossRef]
- COSMIC|SBS—Mutational Signatures. Available online: https://cancer.sanger.ac.uk/signatures/sbs/ (accessed on 21 February 2024).
- Kasar, S.; Kim, J.; Improgo, R.; Tiao, G.; Polak, P.; Haradhvala, N.; Lawrence, M.S.; Kiezun, A.; Fernandes, S.M.; Bahl, S.; et al. Whole-Genome Sequencing Reveals Activation-Induced Cytidine Deaminase Signatures during Indolent Chronic Lymphocytic Leukaemia Evolution. Nat. Commun. 2015, 6, 8866. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.D.; Knutson, T.P.; Munro, S.A.; Miller, J.T.; Heltemes-Harris, L.M.; Mullighan, C.G.; Jepsen, K.; Farrar, M.A. Nuclear Corepressors NCOR1/NCOR2 Regulate B Cell Development, Maintain Genomic Integrity and Prevent Transformation. Nat. Immunol. 2022, 23, 1763–1776. [Google Scholar] [CrossRef] [PubMed]
- Pawlyn, C.; Loehr, A.; Ashby, C.; Tytarenko, R.; Deshpande, S.; Sun, J.; Fedorchak, K.; Mughal, T.; Davies, F.E.; Walker, B.A.; et al. Loss of Heterozygosity as a Marker of Homologous Repair Deficiency in Multiple Myeloma: A Role for PARP Inhibition? Leukemia 2018, 32, 1561–1566. [Google Scholar] [CrossRef]
- Shen, H.-Y.; Tang, H.-L.; Zheng, Y.-H.; Feng, J.; Dong, B.-X.; Chen, X.-Q. The PARP1 Inhibitor Niraparib Represses DNA Damage Repair and Synergizes with Temozolomide for Antimyeloma Effects. J. Oncol. 2022, 2022, 2800488. [Google Scholar] [CrossRef] [PubMed]
- Neri, P.; Ren, L.; Gratton, K.; Stebner, E.; Johnson, J.; Klimowicz, A.; Duggan, P.; Tassone, P.; Mansoor, A.; Stewart, D.A.; et al. Bortezomib-Induced “BRCAness” Sensitizes Multiple Myeloma Cells to PARP Inhibitors. Blood 2011, 118, 6368–6379. [Google Scholar] [CrossRef] [PubMed]
- Rasche, L.; Chavan, S.S.; Stephens, O.W.; Patel, P.H.; Tytarenko, R.; Ashby, C.; Bauer, M.; Stein, C.; Deshpande, S.; Wardell, C.; et al. Spatial Genomic Heterogeneity in Multiple Myeloma Revealed by Multi-Region Sequencing. Nat. Commun. 2017, 8, 268. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.E.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. Identification of Novel Mutational Drivers Reveals Oncogene Dependencies in Multiple Myeloma. Blood 2018, 132, 587–597. [Google Scholar] [CrossRef]
- Huang, S.; Sun, B.; Xiong, Z.; Shu, Y.; Zhou, H.; Zhang, W.; Xiong, J.; Li, Q. The Dysregulation of tRNAs and tRNA Derivatives in Cancer. J. Exp. Clin. Cancer Res. 2018, 37, 101. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Fidalgo, A.; Varanda, A.S.; Oliveira, C.; Santos, M.A.S. tRNA Deregulation and Its Consequences in Cancer. Trends Mol. Med. 2019, 25, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Rosselló-Tortella, M.; Llinàs-Arias, P.; Sakaguchi, Y.; Miyauchi, K.; Davalos, V.; Setien, F.; Calleja-Cervantes, M.E.; Piñeyro, D.; Martínez-Gómez, J.; Guil, S.; et al. Epigenetic Loss of the Transfer RNA-Modifying Enzyme TYW2 Induces Ribosome Frameshifts in Colon Cancer. Proc. Natl. Acad. Sci. USA 2020, 117, 20785–20793. [Google Scholar] [CrossRef]
- Landgraf, B.J.; McCarthy, E.L.; Booker, S.J. Radical S-Adenosylmethionine Enzymes in Human Health and Disease. Annu. Rev. Biochem. 2016, 85, 485–514. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Hölzel, M.; Knijnenburg, T.; Schlicker, A.; Roepman, P.; McDermott, U.; Garnett, M.; Grernrum, W.; Sun, C.; Prahallad, A.; et al. MED12 Controls the Response to Multiple Cancer Drugs through Regulation of TGF-β Receptor Signaling. Cell 2012, 151, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Słabicki, M.; Sellner, L.; Dietrich, S.; Liu, X.; Jethwa, A.; Hüllein, J.; Walther, T.; Wagner, L.; Huang, Z.; et al. MED 12 Mutations and NOTCH Signalling in Chronic Lymphocytic Leukaemia. Br. J. Haematol. 2017, 179, 421–429. [Google Scholar] [CrossRef]
- Colombo, M.; Galletti, S.; Garavelli, S.; Platonova, N.; Paoli, A.; Basile, A.; Taiana, E.; Neri, A.; Chiaramonte, R. Notch Signaling Deregulation in Multiple Myeloma: A Rational Molecular Target. Oncotarget 2015, 6, 26826–26840. [Google Scholar] [CrossRef] [PubMed]
- Ohguchi, H.; Hideshima, T.; Bhasin, M.K.; Gorgun, G.T.; Santo, L.; Cea, M.; Samur, M.K.; Mimura, N.; Suzuki, R.; Tai, Y.-T.; et al. The KDM3A–KLF2–IRF4 Axis Maintains Myeloma Cell Survival. Nat. Commun. 2016, 7, 10258. [Google Scholar] [CrossRef]
- Bolli, N.; Avet-Loiseau, H.; Wedge, D.C.; Van Loo, P.; Alexandrov, L.B.; Martincorena, I.; Dawson, K.J.; Iorio, F.; Nik-Zainal, S.; Bignell, G.R.; et al. Heterogeneity of Genomic Evolution and Mutational Profiles in Multiple Myeloma. Nat. Commun. 2014, 5, 2997. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.A.; Boyle, E.M.; Wardell, C.P.; Murison, A.; Begum, D.B.; Dahir, N.M.; Proszek, P.Z.; Johnson, D.C.; Kaiser, M.F.; Melchor, L.; et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J. Clin. Oncol. 2015, 33, 3911–3920. [Google Scholar] [CrossRef]
- Xu, S.; Tang, C. The Role of ARID1A in Tumors: Tumor Initiation or Tumor Suppression? Front. Oncol. 2021, 11, 745187. [Google Scholar] [CrossRef] [PubMed]
- Piddock, R.; Bowles, K.; Rushworth, S. The Role of PI3K Isoforms in Regulating Bone Marrow Microenvironment Signaling Focusing on Acute Myeloid Leukemia and Multiple Myeloma. Cancers 2017, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- García-Ortiz, A.; Rodríguez-García, Y.; Encinas, J.; Maroto-Martín, E.; Castellano, E.; Teixidó, J.; Martínez-López, J. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers 2021, 13, 217. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, C.; Stühmer, T.; Schmiedl, N.; Wetzker, R.; Mottok, A.; Rosenwald, A.; Langer, C.; Zovko, J.; Chatterjee, M.; Einsele, H.; et al. PI 3K-dependent Multiple Myeloma Cell Survival Is Mediated by the PIK 3 CA Isoform. Br. J. Haematol. 2014, 166, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Azab, F.; Vali, S.; Abraham, J.; Potter, N.; Muz, B.; De La Puente, P.; Fiala, M.; Paasch, J.; Sultana, Z.; Tyagi, A.; et al. PI3KCA Plays a Major Role in Multiple Myeloma and Its Inhibition with BYL719 Decreases Proliferation, Synergizes with Other Therapies and Overcomes Stroma-Induced Resistance. Br. J. Haematol. 2014, 165, 89–101. [Google Scholar] [CrossRef]
- Müller, L.; Hainberger, D.; Stolz, V.; Hamminger, P.; Hassan, H.; Preglej, T.; Boucheron, N.; Sakaguchi, S.; Wiegers, G.J.; Villunger, A.; et al. The Corepressor NCOR1 Regulates the Survival of Single-Positive Thymocytes. Sci. Rep. 2017, 7, 15928. [Google Scholar] [CrossRef] [PubMed]
- Rinn, J.L.; Kertesz, M.; Wang, J.K.; Squazzo, S.L.; Xu, X.; Brugmann, S.A.; Goodnough, L.H.; Helms, J.A.; Farnham, P.J.; Segal, E.; et al. Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs. Cell 2007, 129, 1311–1323. [Google Scholar] [CrossRef] [PubMed]
- Berben, L.; Floris, G.; Wildiers, H.; Hatse, S. Cancer and Aging: Two Tightly Interconnected Biological Processes. Cancers 2021, 13, 1400. [Google Scholar] [CrossRef] [PubMed]
- Urban, V.S.; Cegledi, A.; Mikala, G. Multiple Myeloma, a Quintessential Malignant Disease of Aging: A Geroscience Perspective on Pathogenesis and Treatment. GeroScience 2023, 45, 727–746. [Google Scholar] [CrossRef] [PubMed]
- Laconi, E.; Marongiu, F.; DeGregori, J. Cancer as a Disease of Old Age: Changing Mutational and Microenvironmental Landscapes. Br. J. Cancer 2020, 122, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, N.; Rajkumar, S.V.; Greipp, P.; Kapoor, P.; Gertz, M.A.; Dispenzieri, A.; Baughn, L.B.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; et al. Cytogenetic Abnormalities in Multiple Myeloma: Association with Disease Characteristics and Treatment Response. Blood Cancer J. 2020, 10, 82. [Google Scholar] [CrossRef]
- Grasedieck, S.; Panahi, A.; Jarvis, M.C.; Borzooee, F.; Harris, R.S.; Larijani, M.; Avet-Loiseau, H.; Samur, M.; Munshi, N.; Song, K.; et al. Redefining High Risk Multiple Myeloma with an APOBEC/Inflammation-Based Classifier. Leukemia 2024, 38, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Maura, F.; Rajanna, A.R.; Ziccheddu, B.; Poos, A.M.; Derkach, A.; Maclachlan, K.; Durante, M.; Diamond, B.; Papadimitriou, M.; Davies, F.; et al. Genomic Classification and Individualized Prognosis in Multiple Myeloma. J. Clin. Oncol. 2024, 42, 1229–1240. [Google Scholar] [CrossRef]
- Chng, W.J.; Gonzalez-Paz, N.; Price-Troska, T.; Jacobus, S.; Rajkumar, S.V.; Oken, M.M.; Kyle, R.A.; Henderson, K.J.; Van Wier, S.; Greipp, P.; et al. Clinical and Biological Significance of RAS Mutations in Multiple Myeloma. Leukemia 2008, 22, 2280–2284. [Google Scholar] [CrossRef]
- Sacco, A.; Federico, C.; Todoerti, K.; Ziccheddu, B.; Palermo, V.; Giacomini, A.; Ravelli, C.; Maccarinelli, F.; Bianchi, G.; Belotti, A.; et al. Specific Targeting of the KRAS Mutational Landscape in Myeloma as a Tool to Unveil the Elicited Antitumor Activity. Blood 2021, 138, 1705–1720. [Google Scholar] [CrossRef] [PubMed]
- Giesen, N.; Paramasivam, N.; Toprak, U.H.; Huebschmann, D.; Xu, J.; Uhrig, S.; Samur, M.; Bähr, S.; Fröhlich, M.; Mughal, S.S.; et al. Comprehensive Genomic Analysis of Refractory Multiple Myeloma Reveals a Complex Mutational Landscape Associated with Drug Resistance and Novel Therapeutic Vulnerabilities. Haematologica 2022, 107, 1891–1901. [Google Scholar] [CrossRef] [PubMed]
- Boyle, E.M.; Rosenthal, A.; Wang, Y.; Farmer, P.; Rutherford, M.; Ashby, C.; Bauer, M.; Johnson, S.K.; Wardell, C.P.; Hoering, A.; et al. High-risk Transcriptional Profiles in Multiple Myeloma Are an Acquired Feature That Can Occur in Any Subtype and More Frequently with Each Subsequent Relapse. Br. J. Haematol. 2021, 195, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Misund, K.; Hofste Op Bruinink, D.; Coward, E.; Hoogenboezem, R.M.; Rustad, E.H.; Sanders, M.A.; Rye, M.; Sponaas, A.-M.; Van Der Holt, B.; Zweegman, S.; et al. Clonal Evolution after Treatment Pressure in Multiple Myeloma: Heterogenous Genomic Aberrations and Transcriptomic Convergence. Leukemia 2022, 36, 1887–1897. [Google Scholar] [CrossRef]
- Rustad, E.H.; Yellapantula, V.; Leongamornlert, D.; Bolli, N.; Ledergor, G.; Nadeu, F.; Angelopoulos, N.; Dawson, K.J.; Mitchell, T.J.; Osborne, R.J.; et al. Timing the Initiation of Multiple Myeloma. Nat. Commun. 2020, 11, 1917. [Google Scholar] [CrossRef]
- Ewels, P.A.; Peltzer, A.; Fillinger, S.; Patel, H.; Alneberg, J.; Wilm, A.; Garcia, M.U.; Di Tommaso, P.; Nahnsen, S. The Nf-Core Framework for Community-Curated Bioinformatics Pipelines. Nat. Biotechnol. 2020, 38, 276–278. [Google Scholar] [CrossRef]
- Garcia, M.; Juhos, S.; Larsson, M.; Olason, P.I.; Martin, M.; Eisfeldt, J.; DiLorenzo, S.; Sandgren, J.; Díaz De Ståhl, T.; Ewels, P.; et al. Sarek: A Portable Workflow for Whole-Genome Sequencing Analysis of Germline and Somatic Variants. F1000Research 2020, 9, 63. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.; Sougnez, C.; Gabriel, S.; Meyerson, M.; Lander, E.S.; Getz, G. Sensitive Detection of Somatic Point Mutations in Impure and Heterogeneous Cancer Samples. Nat. Biotechnol. 2013, 31, 213–219. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the Deleteriousness of Variants throughout the Human Genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef] [PubMed]
- Kandoth, C.; Gao, J.; Qwangmsk; Mattioni, M.; Struck, A.; Boursin, Y.; Penson, A.; Chavan, S. Mskcc/Vcf2maf: Vcf2maf v1.6.15. 2017. Available online: https://zenodo.org/records/1127697 (accessed on 21 February 2024).
- Shyr, C.; Tarailo-Graovac, M.; Gottlieb, M.; Lee, J.J.; Van Karnebeek, C.; Wasserman, W.W. FLAGS, Frequently Mutated Genes in Public Exomes. BMC Med. Genomics 2014, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A.; Kinzler, K.W. Cancer Genome Landscapes. Science 2013, 339, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational Heterogeneity in Cancer and the Search for New Cancer-Associated Genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef]
- Rustad, E.H.; Nadeu, F.; Angelopoulos, N.; Ziccheddu, B.; Bolli, N.; Puente, X.S.; Campo, E.; Landgren, O.; Maura, F. Mmsig: A Fitting Approach to Accurately Identify Somatic Mutational Signatures in Hematological Malignancies. Commun. Biol. 2021, 4, 424. [Google Scholar] [CrossRef] [PubMed]
- Metzger, P.; Hess, M.E.; Blaumeiser, A.; Pauli, T.; Schipperges, V.; Mertes, R.; Christoph, J.; Unberath, P.; Reimer, N.; Scheible, R.; et al. MIRACUM-Pipe: An Adaptable Pipeline for Next-Generation Sequencing Analysis, Reporting, and Visualization for Clinical Decision Making. Cancers 2023, 15, 3456. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Mayakonda, A.; Lin, D.-C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and Comprehensive Analysis of Somatic Variants in Cancer. Genome Res. 2018, 28, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Denz, R.; Timmesfeld, N. Visualizing the (Causal) Effect of a Continuous Variable on a Time-To-Event Outcome. Epidemiology 2023, 34, 652–660. [Google Scholar] [CrossRef] [PubMed]
Sample Size (N) | 35 |
---|---|
Sex: | |
Male n (%) | 15/35 (42.9) |
Female n (%) | 20/35 (57.1) |
Median age at diagnosis [years] | 66.8 (Range: 43–85) |
Plasma cell bone marrow infiltration (%) | 45 (Range: 12–80) |
R-ISS-Score: | |
R-ISS 1 n (%) | 10/35 (28.6) |
R-ISS 2 n (%) | 17/35 (48.6) |
R-ISS 3 n (%) | 8/35 (22.9) |
Cytogenetics: | |
del17p n (%) | 3/30 (10.0) * |
Translocation t(4;14) n (%) | 0/30 (0) * |
Translocation t(14;16) n (%) | 1/30 (3.3) * |
Translocation t(14;20) n (%) | 1/30 (3.3) * |
Initial 1p, 1q alteration n (%) | 8/30 (26.7) * |
Translocation t(11;14) n (%) | 4/30 (13.3) * |
Hyperdiploidy n (%) | 13/30 (43.3) * |
Treatment ** n (%) | |
VD n (%) | 6/31 (19.1) |
VRD n (%) | 6/31 (19.4) |
VCD n (%) | 9/31 (29.0) |
Dara-VTD n (%) | 1/31 (3.2) |
Dara-VD n (%) | 1/31 (3.2) |
KRD n (%) | 3/31 (9.7) |
RD n (%) | 3/31 (9.7) |
E-KRD n (%) | 2/31 (6.5) |
Autologous transplantation n (%) | 17/31 (54.8) ** |
Relapse n (%) | 5/35 (14.3) |
Death n (%) | 5/35 (14.3) |
Signature | Signature | Gene | p-Value |
---|---|---|---|
SBS1 | Mutations related to cell aging (i.e., clock-like) | ||
SBS5 | Mutations related to cell aging (i.e., clock-like) | GPNMB | 0.0412 |
SBS2 | Resulting from APOBEC cytidine deaminase activity | ||
SBS13 | Resulting from APOBEC cytidine deaminase activity | TYW1 | 0.0340 |
SBS8 | Unknown etiology | GPNMP | 0.0066 |
SBS9 | Non-canonical genome-wide action of AID (nc-AID) | NCOR1 OR51G1 | 0.0054 0.0405 |
SBS18 | Related to DNA damage from reactive oxygen species | PIK3CA | 0.0179 |
SBS-MM1 | Mutational footprint of melphalan therapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oelschläger, L.; Künstner, A.; Frey, F.; Leitner, T.; Leypoldt, L.; Reimer, N.; Gebauer, N.; Bastian, L.; Weisel, K.; Sailer, V.-W.; et al. Whole-Exome Sequencing, Mutational Signature Analysis, and Outcome in Multiple Myeloma—A Pilot Study. Int. J. Mol. Sci. 2024, 25, 13418. https://doi.org/10.3390/ijms252413418
Oelschläger L, Künstner A, Frey F, Leitner T, Leypoldt L, Reimer N, Gebauer N, Bastian L, Weisel K, Sailer V-W, et al. Whole-Exome Sequencing, Mutational Signature Analysis, and Outcome in Multiple Myeloma—A Pilot Study. International Journal of Molecular Sciences. 2024; 25(24):13418. https://doi.org/10.3390/ijms252413418
Chicago/Turabian StyleOelschläger, Lorenz, Axel Künstner, Friederike Frey, Theo Leitner, Lisa Leypoldt, Niklas Reimer, Niklas Gebauer, Lorenz Bastian, Katja Weisel, Verena-Wilbeth Sailer, and et al. 2024. "Whole-Exome Sequencing, Mutational Signature Analysis, and Outcome in Multiple Myeloma—A Pilot Study" International Journal of Molecular Sciences 25, no. 24: 13418. https://doi.org/10.3390/ijms252413418
APA StyleOelschläger, L., Künstner, A., Frey, F., Leitner, T., Leypoldt, L., Reimer, N., Gebauer, N., Bastian, L., Weisel, K., Sailer, V.-W., Röcken, C., Klapper, W., Konukiewitz, B., Murga Penas, E. M., Forster, M., Schub, N., Ahmed, H. M. M., Kirfel, J., von Bubnoff, N. C. C., ... Khandanpour, C. (2024). Whole-Exome Sequencing, Mutational Signature Analysis, and Outcome in Multiple Myeloma—A Pilot Study. International Journal of Molecular Sciences, 25(24), 13418. https://doi.org/10.3390/ijms252413418