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Abstract: The complex and heterogeneous genomic landscape of multiple myeloma (MM) and
many of its clinical and prognostic implications remains to be understood. In other cancers, such as
breast cancer, using whole-exome sequencing (WES) and molecular signatures in clinical practice
has revolutionized classification, prognostic prediction, and patient management. However, such
integration is still in its early stages in MM. In this study, we analyzed WES data from 35 MM
patients to identify potential mutational signatures and driver mutations correlated with clinical
and cytogenetic characteristics. Our findings confirm the complex mutational spectrum and its
impact on previously described ontogenetic and epigenetic pathways. They show TYW1 as a possible
new potential driver gene and find no significant associations of mutational signatures with clinical
findings. Further studies are needed to strengthen the role of mutational signatures in the clinical
context of patients with MM to improve patient management.

Keywords: multiple myeloma; whole-exome sequencing; somatic signatures

1. Introduction

Multiple myeloma (MM) is a malignant B-cell neoplasm with an incidence
of 1.78 (95% UI 1.69–1.87) per 100,000 and is associated with the Western lifestyle [1–3].
MM is often preceded by Monoclonal Gammopathy of Unknown Significance (MGUS) or
smoldering multiple myeloma (SMM) and is diagnosed following the International Multiple
Myeloma Working Group (IMWG) criteria [2,4–7]. Treatment is currently guided by patient-
and disease-specific factors, such as comorbidities as well as high-risk cytogenetics, which
have evolved significantly over the past decade, resulting in improved therapy [8,9].
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Recent studies have described the genomic landscape of MM and its minimal residual
disease (MRD) and showed genomic differences between progressing and stable myeloma
precursor states [10–13]. With mutational signatures being increasingly analyzed in cancer
genomics, the findings may provide insights into cancer biology, prognosis, and even
treatment decisions through improved disease classification. Furthermore, a practical guide
for analyzing somatic signatures in hematological malignancies has been proposed [14–17].

While previous studies have shown associations between genomic alterations and
patient outcomes in MM [18,19], further studies are needed to investigate the role of somatic
signatures in MM. Here, we evaluate the association of somatic signatures with clinical
patient characteristics and progression-free survival (PFS) in a cohort of 35 MM patients
using whole-exome sequencing (WES). Our results confirm previously reported affected
pathways and show new potential driver genes. Significant associations with biological
factors or PFS were not found in our study cohort.

2. Results
2.1. Clinical Characteristics of the Study Group

This study aims to analyze the clinical and genomic features of patients recently
diagnosed with MM using clinical and WES data. A total of 35 patients diagnosed with
MM between January 2019 and February 2023 were included in this analysis. The median
age at diagnosis was 66.8 years, with 42.9% of the patients being male. The majority of
patients received bortezomib-based induction therapy, with 17 out of 31 patients (54.8%)
subsequently undergoing autologous hematopoietic stem cell transplantation. At the time
of analysis, 5 out of the 35 patients (14.3%) had died. Further patient details are shown in
Table 1.

Table 1. Clinical and cytogenetic characteristics of the study cohort.

Sample Size (N) 35

Sex:

Male n (%) 15/35 (42.9)

Female n (%) 20/35 (57.1)

Median age at diagnosis [years] 66.8 (Range: 43–85)

Plasma cell bone marrow infiltration (%) 45 (Range: 12–80)

R-ISS-Score:

R-ISS 1 n (%) 10/35 (28.6)

R-ISS 2 n (%) 17/35 (48.6)

R-ISS 3 n (%) 8/35 (22.9)

Cytogenetics:

del17p n (%) 3/30 (10.0) *

Translocation t(4;14) n (%) 0/30 (0) *

Translocation t(14;16) n (%) 1/30 (3.3) *

Translocation t(14;20) n (%) 1/30 (3.3) *

Initial 1p, 1q alteration n (%) 8/30 (26.7) *

Translocation t(11;14) n (%) 4/30 (13.3) *

Hyperdiploidy n (%) 13/30 (43.3) *
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Table 1. Cont.

Sample Size (N) 35

Treatment ** n (%)

VD n (%) 6/31 (19.1)

VRD n (%) 6/31 (19.4)

VCD n (%) 9/31 (29.0)

Dara-VTD n (%) 1/31 (3.2)

Dara-VD n (%) 1/31 (3.2)

KRD n (%) 3/31 (9.7)

RD n (%) 3/31 (9.7)

E-KRD n (%) 2/31 (6.5)

Autologous transplantation n (%) 17/31 (54.8) **

Relapse n (%) 5/35 (14.3)

Death n (%) 5/35 (14.3)
* 5 Patients with unknown cytogenetic diagnosis; ** 4 Patients with missing clinical data; R-ISS: Revised Interna-
tional Staging System; Dexamethasone (D), Bortezomib (V (Velcade)), Lenalidomide (R (Revlimid)), Cyclophos-
phamide (C), Daratumumab (Dara), Thalidomide (T), Carfilzomib (K), Elotuzumab (E).

2.2. Mutational Landscape of Multiple Myeloma Identified by Whole Exome Sequencing

We reconstructed the multiple myeloma mutational landscape from the whole-exome
sequencing of the patients’ tumor DNA. Due to the unavailability of matching germline
DNA, the identified variants were rigorously filtered, as detailed in the Methods section. In
total, 6755 single-nucleotide variants (SNVs) were identified, of which 67.8% were missense
mutations and 18.3% were nonsense mutations. Additionally, 13.7% of all SNVs were
insertions or deletions, with the remaining variants comprising non-stop and splice site
mutations (0.1% each). All samples were microsatellite stable (MSS 0%). In total, 3 out of
35 patients exhibited a high homologous recombination deficiency score (HRD-score > 42),
and 12 patients had a high BRCAness score (>20). The average tumor mutational burden
(TMB) was 5.05 mutations per megabase (median 3.35; range 1.75–52.20). Genes mutated
in more than a third of the cohort included LILRA5 (54%), TYW1 (51%), KMT2C (40%),
KMT2D (40%), NOTCH1 (34%), and NOTCH2 (34%). All identified variants with PFAM
annotations are detailed in Supplementary Table S1.

2.3. Potential Driver Genes and Affected Pathways

Identifying potential driver genes in cancer is essential as it offers insights into the
underlying molecular mechanisms driving tumorigenesis, informs on potential therapeutic
targets, and facilitates the development of personalized treatment strategies to improve
patient outcomes. In this study, we employed MutSigCV, a robust computational tool,
to identify potential driver genes with high confidence, given its ability to detect signifi-
cantly mutated genes while minimizing false positives by incorporating patient-specific
mutational heterogeneity. Of the 23 potential driver genes (p < 0.001), several key driver
genes were identified in our cohort, with TYW1, KMT2D, NOTCH1, ARID1A, and MED12
mutations being the most prevalent, found in 31–51% of patient samples. TYW1 mutations
were most frequent, with three variants of missense mutations (TYW1 c.G393A (n = 9),
c.R425 (n = 15), and c.W437* (n = 1)) with allele frequencies between 0.1 and 0.2261. Addi-
tionally, our analysis uncovered other mutations previously documented in MM, present
in 20–29% of our samples. These include mutations in NCOR1, KDM3A, KRAS, and NRAS.
We also identified alterations in genes involved in various critical biological processes:
MDC1, associated with DNA damage response and drug resistance in MM; DAXX, in-
volved in chromatin regulation; GPNMB, linked to immunosuppression in cancer; and XK,
which plays a role in hematopoiesis [20–24]. In-frame insertions in KMD3A were uniquely
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observed in our study cohort. KRAS and GPNMB mutations were solely attributed to
missense mutations, whereas FCAMR and SUZ12 mutations were caused exclusively by
nonsense mutations. Notably, some of the latter genes have not been described previously
in the context of MM, highlighting novel avenues for research. All identified potential
driver genes are illustrated in Figure 1, and Supplementary Table S2 shows the complete
results from MutSigCV.
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targets. With this in mind, we identified pathways influenced by mutations implicated in 
cancer progression. Figure 2 illustrates known oncogenic pathways affected by mutations, 
showcasing myeloma-typical pathways pivotal for MM pathogenesis, such as MAPK [25–27], 
NOTCH [28], HIPPO [29], WNT [30], IP3K [31], NRF2 [32], TGF b, MYC, and TP53 [33]. 
While some pathways were found to be affected with high frequency, especially RTK-RAS 
and NOTCH pathways (see Figure 2A), others were only found in two samples (NRF2). 
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the individual sample contributions to affected pathways and the frequency of affected pathways 
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Figure 1. Oncoplot displaying potential driver genes inferred by MutSigCV (p < 0.001, n = 35). Bar
plots refer to individual tumor burden (upper bar plot in mutations per megabase), −log10 p values
retrieved from MutSigCV (left), and the number of samples harboring mutations in a given gene
(right). Different classes of mutations are color-coded, and additional covariates are shown below
(Revised International Scoring System (R-ISS)).

Understanding the oncogenic pathways affected by mutations is crucial for deciphering
the mechanisms underlying cancer progression and identifying potential therapeutic targets.
With this in mind, we identified pathways influenced by mutations implicated in cancer
progression. Figure 2 illustrates known oncogenic pathways affected by mutations, show-
casing myeloma-typical pathways pivotal for MM pathogenesis, such as MAPK [25–27],
NOTCH [28], HIPPO [29], WNT [30], IP3K [31], NRF2 [32], TGF b, MYC, and TP53 [33].
While some pathways were found to be affected with high frequency, especially RTK-RAS
and NOTCH pathways (see Figure 2A), others were only found in two samples (NRF2).
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Figure 2. Oncogenic pathways are affected by mutations found in the cohort. (A) Heatmap showing
the individual sample contributions to affected pathways and the frequency of affected pathways in
percentage; (B) bar graphs showing the fraction of genes mutated in a particular pathway.

Analyzing somatic interactions is crucial as it unveils the intricate network of genetic
interactions driving cancer development and progression, shedding light on potential
synergistic or antagonistic relationships between mutated genes. In Figure 3, somatic
interactions of genes are displayed. Significant somatic interactions of mutations were
found between FCAMR/MED12, SUZ12/NCOR1, and MLIP/DAXX (p < 0.01), while
others did not frequently co-occur (with blue indicating the exclusivity of mutations
and red highlighting the co-occurrence of somatic mutations). The interactions provide
further insights into the complex molecular landscape of MM and the interplay between
mutated genes.
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Gene names on the left and upper side with the number of affected patients in the cohort; p-values
for statistical significance marked with (p < 0.05) or * (p < 0.01).
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2.4. Analysis of Somatic Signatures

Somatic signatures, which represent distinct patterns of mutations arising from various
mutagenic processes, are crucial for understanding the underlying mechanisms of cancer
development and progression. Since their first description, they have provided insights into
the etiology and chronological evolution of cancers, thus playing an increasingly important
role in cancer biology and personalized medicine [34].

All 35 samples were analyzed for their association with somatic signatures using the
COSMIC single base substitutions catalog [35] (Figure 4). COSMIC single-base substitutions
(SBSs) is a catalog of mutational signatures representing distinct single-nucleotide changes
observed in cancer genomes derived from extensive sequencing data across different
tumor types. Each SBS signature reflects a unique pattern of mutations linked to specific
mutational processes, such as aging, environmental exposures, or DNA repair defects. The
most dominant signature identified was single-base substitution 5 (SBS5), with a mean
prevalence of 73.2% (s.d. ± 14.3), present in all samples. SBS5, like SBS1, is associated with
cell aging (e.g., the clock-like accumulation of mutations) and correlates with patient age.
However, our cohort showed no significant correlation between the contribution of SBS5
and the age at diagnosis (linear regression; p = 0.2840; multiple R2 = 0.0352). This result was
corroborated by modeling age as a non-linear trend using b-splines (p = 0.3054; multiple
R2 = 0.0715). Next, we analyzed the impact of somatic signatures on tumor mutational
burden (TMB) and homologous recombination deficiency (HRD). TMB was best explained
by a linear combination of SBS5, SBS8, SBS9, and SBS-MM1 (stepwise linear regression;
p = 4 × 10−4; adjusted R2 = 0.4145), with SBS5, a mutational signature of unknown etiology,
having a significant positive correlation (pSBS5 = 0.008). No associations were found for
HRD (stepwise linear regression; best model HRD~SBS9; p = 0.0817; adjusted R2 = 0.0614).
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Further, we investigated the associations between mutations in potential driver genes
(as depicted in Figure 1) and the estimated somatic signatures. Two genes, NCOR1 and
GPNMB, exhibited a significant relationship (p < 0.01) between their mutational status
and the proportion of somatic signature SBS9 (NCOR1; Wilcoxon test; p = 0.0054) and
SBS8 (GPNMB; p = 0.0066). SBS9 is associated with non-canonical genome-wide action of
activation-induced deaminase (nc-AID). Nc-AID has previously been shown to occur in
earlier chronic lymphoid leukemia (CLL) and is associated with IGVH mutational status.
Furthermore, NCOR1 is known to play a role in B-cell development [36,37]. Overall, we
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identified six genes that showed a significant relationship with the proportions of various
somatic signatures (p < 0.05), highlighting the complex interplay between specific genetic
mutations and mutational patterns. Somatic signatures, association to mutated genes, and
biological associations are shown in Table 2. These findings underscore the importance of
understanding gene-specific contributions to mutational signatures, which could provide
more profound insights into the etiology and progression of MM.

Table 2. Genes with significant association with SBS signatures.

Signature Signature Gene p-Value

SBS1 Mutations related to cell aging
(i.e., clock-like)

SBS5 Mutations related to cell aging
(i.e., clock-like) GPNMB 0.0412

SBS2 Resulting from APOBEC cytidine
deaminase activity

SBS13 Resulting from APOBEC cytidine
deaminase activity TYW1 0.0340

SBS8 Unknown etiology GPNMP 0.0066

SBS9 Non-canonical genome-wide action
of AID (nc-AID)

NCOR1
OR51G1

0.0054
0.0405

SBS18 Related to DNA damage from
reactive oxygen species PIK3CA 0.0179

SBS-MM1 Mutational footprint of
melphalan therapy

2.5. Correlation of Somatic Signatures, Patient Characteristics, Progression-Free Survival (PFS),
and Overall Survival (OS)

In our patient samples, no significant associations were found between somatic signa-
tures and age (p > 0.05). No significant correlations between cytogenetics (del17p, t(4;14),
t(14;16), t(14;20), 1p/1q alteration, t(11;14), and hyperdiploid) at diagnosis and somatic
signatures were found (p > 0.05). We next investigated the impact of certain mutations,
tumor mutational burden, and somatic signatures on progression-free and overall survival.
First, we tested for the influence of tumor mutational burden on PFS but found no sig-
nificant relationship (Univariate Cox regression; beta = 0.014; p = 0.22) To investigate the
connection between tumor mutational burden and overall survival, a Cox regression model
was used, including age at diagnosis, sex, and estimated TMB as independent variables.
None of the variables showed a significant correlation with overall survival (p > 0.05).
However, we observe a trend that higher TMB at diagnosis leads to longer overall survival
(Supplementary Figure S2).

To assess the clinical impact of somatic signatures, we performed clustering of our
patient samples based on clinical data and PFS. Our analysis aimed to determine whether
specific somatic signatures were associated with differences in PFS. However, the results
indicated that there was no significant correlation between the identified somatic sig-
natures and PFS within our patient cohort. Focusing on the Apolipoprotein B mRNA
editing enzyme, catalytic polypeptide (APOBEC) mutational signature (SBS2 and SBS13), a
known adverse risk factor in MM, no significant differences in PFS were observed between
APOBEC-positive and -negative samples (p = 0.47). This suggests that, despite the potential
biological relevance of somatic signatures, they may not always directly influence clinical
outcomes such as PFS in MM. Our data did not show statistically significant differences
in PFS or OS for patients with TYW1 mutations despite their high occurrence. However,
we found that mutations in KRAS impact PFS with a median PFS of 304 days in patients
with a mutation (n = 9) and 940 days in patients not carrying a mutation (n = 26; p = 0.07;
Figure 5); the most frequent mutations in KRAS were G13D (n = 4), followed by Q61H
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(n = 2) and G12A/R/V (each n = 1). Furthermore, we investigated the impact of somatic
signature and gene mutations on overall survival. While no impact of somatic signatures
was found, mutations in KRAS, NCOR1, JAK1, and CROCC were associated with dismal
overall survival. The OS analysis, as a separate analysis for patients undergoing autologous
stem cell transplantation, is shown in Supplementary Figures S3 and S4.
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3. Discussion

Our study contributes to the understanding of molecular signatures in MM and adds
to the efforts to better understand the implications of genomic alterations in patients with
MM. We identified new somatic mutations with high frequency in our cohort (e.g., TYW1)
with a possible role in pathogenesis and did not find significant correlations of somatic
signatures with patient characteristics and clinical outcomes.

In our cohort, 3 of 35 samples (8.57%) showed a high HRD-score, while 12 of 35 (35%)
showed a high BRCAness. Previous studies have investigated the role of HRD in MM
and the potential use of Poly(ADP-ribose) polymerase (PARP) inhibitors [17,38,39] since
PARP enzymes are involved in DNA damage repair. Bortezomib induces a BRCAness
state in myeloma cells and impairs the initiation of homologous recombination DNA
repair, which may render myeloma cells sensitive to PARP inhibitors [40]. Given the
relatively high numbers of HRD and BRCAness, these findings support the potential use of
PARP inhibitors.

Intra- and inter-patient genomic heterogeneity has been described in MM patients, as
well as variation in potential driver genes [26,41,42]. Our study identified new potential
driver genes, including TRNA-YW Synthesizing Protein 1 Homolog (TYW1) and Mediator
Complex Subunit 12 (MED12), and confirmed previously described potential driver genes,
e.g., NRAS, KRAS, and NOTCH1.

Interestingly, TYW1 mutations were present in 18 patients (51%). TYW1 is a protein-
coding gene related to transfer RNA (tRNA) processing, which has not yet been associated
with MM. While previous studies have suggested a role of tRNA in tumorigenesis [43–45],
to our knowledge, our study is the first to report a high frequency of TYW1 mutations in
MM. All mutations are antecedent (c.G393A) or within the radical S-adenosyl methionine
(SAM) domain of TYW1, which is involved in tRNA modification. TYW1—together with
six other enzymes (TYW2-5 and tRNA methyltransferase 5 (TRMT5))—catalyze stepwise
modifications of tRNAphe at position 37 [46]. While the hypomodification of tRNAphe by the
silencing of TYW2 leads to a ribosome frameshift and poorer outcome in colorectal cancer
patients [45], the role of TYW1 mutations on tRNA modification, the resulting translational
changes, its implications on tumorigenesis, and its role as a possible therapeutic target in
MM need to be studied further.
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MED12 plays an important role in the initiation of transcription and was linked to
response in multiple cancers through the regulation of TGF-β signaling [47]. MED12 muta-
tions in the N-terminus were linked to NOTCH signaling activation in chronic lymphocytic
leukemia, whilst the activation of NOTCH signaling is a promotor of disease progression
and forms a supportive microenvironment in MM [48,49], therefore likely to play a role
in its pathogenesis. Interestingly, in our analysis, only in-frame insertions were found in
KDM3A, which acts as an epigenetic regulator via the demethylation of downstream targets
contributing to myeloma cell survival [50]. The exact biological effect of these insertions
will have to be determined.

Other sub-forms of KMT2/NOTCH, as well as ARID1A, have been previously de-
scribed in MM or its precursors [11,26,51,52]. Both KMT2D and NOTCH1 mutations are
present in various cancer types. ARID1A, in most cases, acts as a cancer suppressor, while
the loss of ARID1A leads to increased cell proliferation [53]. In most samples, the RTK-RAS,
NOTCH pathway, or epigenetic gene regulators were affected by potential driver genes.

The PI3K/Akt/mTOR pathway and its impact on MM cell survival and supporting tu-
mor microenvironment have been described [31,54,55]. Particularly, treatment combination
with PIK3CA inhibitors led to decreased MM cell survival in vitro [56,57]. Other mutations
occurring in lower frequencies in our studies, such as XK, TRPV6, DAXX, DMXL2, FCAMR,
and ERLEC1, need further investigation to determine their role in MM.

Interestingly, our study revealed a significant interaction between NCOR1 and SUZ12
somatic mutations. While NCOR1 is a transcriptional regulator by bridging repressive
transcription factors with chromatin modifiers involved in T-cell survival and B-cell devel-
opment [37,58], SUZ12 may be involved in chromatin silencing [59], indicating possible
synergistic effects. Further studies must determine the exact mechanisms of somatic inter-
actions and their putative impact on oncogenesis.

SBS5 was present in all patient samples. This finding is well in line with the accumula-
tion of cellular damage, mutations, and changing microenvironment during aging and its
possible role in cancer development [60–62]. While we found no correlation between age
and SBS5 in our study, the distribution of SBS5 may differ while the disease evolves from
its precursors. Cytogenetic abnormalities in MM have been linked to therapy response
and prognosis [19,63], and the mutational signature of APOBEC is an adverse risk factor in
MM [15,16,64,65]. In this study, no association was found between somatic signatures and
cytogenetic findings/progression-free survival or overall survival. We found no significant
association between TMB and progression-free or overall survival.

Following previous results, [66] we found dismal progression-free survival in pa-
tients with KRAS mutations. With 25.7% percent of our study cohort affected by known
pathogenic KRAS mutations (G13D, Q61H, and G12A/R/V), our findings underline the
possible therapeutic utilities of targeted KRAS inhibitors in patients with MM.

A total of four mutations were associated with dismal overall survival (KRAS, NCOR1,
JAK1, and CROCC). In contrast to our finding, KRAS expression but not KRAS mutational
status was associated with adverse outcomes [67]. The role of the other found mutations
on OS in MM is still unclear.

The findings need to be interpreted in consideration of important limitations of our
study. Firstly, our sample size is limited. Although, to our knowledge, no differences in
methodology in mutation calling were applied, mutation frequencies may be overestimated
in our study, considering frequencies in other publications [10,68]. The association between
somatic signature, cytogenetics, overall, and progression-free survival might unravel with
increasing patient/sample numbers. A recent study developed a new individualized pa-
tient outcome prediction model that integrates genomic, clinical, and treatment data [65],
but the small sample size in this study does not allow for a similar approach. We focused on
the SBS signature as this includes MM-specific signatures (MM1 and MM2). We emphasize
that other types of signatures (double-base substitutions (DBSs) and signature of copy
number variations (CN)) exist and may provide further insight into the association between
somatic signatures and MM. Secondly, due to a lack of material, a correlation with matching



Int. J. Mol. Sci. 2024, 25, 13418 10 of 15

germline DNA was not possible. Thirdly, clonal evolution and molecular changes are ob-
served in the majority of patients as the disease progresses and treatment is applied [69,70].
Therefore, somatic signatures change during disease evolution and treatment duration, as
previously shown [71]. Our cohort was treated differently, and the median follow-up was
relatively short (median 648 days). This limits our findings concerning outcome parameters
such as overall and progression-free survival and underscores the need for prospective
studies, repetitive analysis, and the correlation of WES data and clinical outcome to evaluate
the role of somatic signatures and clinical outcome parameters in MM.

In summary, this study validates the heterogeneous genomic landscape and affected
pathways in MM in a real-world clinical setting, identifies new mutations, such as TYW1,
that have not been previously reported in MM, and describes associations of clinical
findings and progression-free survival with somatic signatures. The findings presented in
this study have to be confirmed in larger cohorts and may ultimately improve classification
and patient management in the future.

4. Methods
4.1. Case Selection, Extraction of Nucleic Acids, and Whole-Exome Sequencing

Samples from 35 patients with newly diagnosed untreated MM according to the IMWG
criteria [1] were collected, and WES analysis was conducted between December 2022 and
February 2023. Patients were retrospectively selected for analysis. Clinical data were ob-
tained from patients’ medical records, including radiology reports, oncology/hematology
reports, and laboratory data from January 2019 to February 2023. The cut-off date for
analysis was 28 February 2023, with a median follow-up of 648 days.

Written informed consent for WES analysis was obtained from all 35 patients. The study
was approved by the Institutional Review Board of the University of Lübeck (2024-104) and
conducted following the Declaration of Helsinki.

Tumor DNA was extracted from formalin-fixed and paraffin-embedded (FFPE) bone
marrow biopsies using the Maxwell FFPE Kit system (Promega, Fitchburg, WI, USA).
The quality and quantity of DNA was analyzed using the Qubit system (ThermoFisher,
Waltham, MA, USA). Library preparation was carried out using the xGen Exome Hyb
Panel v2 (IDT) and the Illumina DNA Prep with Enrichment kit (IDT for Illumina). Se-
quencing was subsequently performed on the NovaSeq 6000 platform (Illumina, San Diego,
CA, USA), with a target sequencing coverage of >400× (tumor).

4.2. Sequencing Data Processing, Variant Calling, and Filtering

Raw sequencing data (paired-end fastq files) were mapped to the human reference
genome (version GRCh38) and processed using nfcore/sarek (v3.2.3) [72,73]. Briefly, se-
quencing quality was assessed using fastqc (v0.11.9), and low-quality bases/reads were
removed utilizing fastp (v0.23.4) [74]. Next, cleaned reads were mapped to GRCh38 using
bwa-mem2 (v2.2.1), and mappings were processed according to GATKs best practices.
Variant calling in tumor-only mode was performed using Mutect2 (v4.4.0.0) [75]; identified
variants were left-aligned (GATK v4.2.4.1) [76] and variants were annotated using Variant
Effect Predictor (VEP v110 [77], GRCh38; adding CADD v1.6 [78], dbNSFP v4.4c, and
gnomAD r3.0 as additional annotations) and annotations were converted into MAF format
using vcf2maf (v1.6.21) [79]; coverage was extracted directly from the INFO field in the
vcf files.

Variants outside known coding regions (located in, e.g., intron, UTRs) were removed,
and variants with population allele frequency > 0.001 in the GNOMAD or POPFREQ
MAX database were discarded, as were variants outside regions defined in the sequencing
panel. The top 20 most frequently mutated genes (FLAGS, [80]) were excluded from
further analysis to balance artifact removal with retaining true biological signals; the
remaining somatic variants were filtered as follows: a minimum coverage of 50, a minimum
alternative allele coverage of 5, and a minimum variant allele frequency of 10%. High-
impact variants (CADD score > 20) in tumor suppressors and oncogenes, as defined by
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Vogelstein et al., [81], were filtered such that a minimum coverage of 20, a minimum
alternative coverage of 4, and a minimum variant allele frequency of 10% was required (see
Supplementary Figure S1). Genes that mutated more often than expected were identified
by applying MutSigCV (v1.41 [82]), and potential drivers were identified using a p-value
threshold of <0.001. Somatic signatures on single-base substitutions (SBSs) were estimated
using mmsig [83] (v0.0.0.9000; adjusted for GRCh38) on driver and passenger mutations,
and HRD scores were calculated employing the MIRACUM-Pipe (v4.1.0 [84]). Tumor
mutational burden (TMB), BRCAness, and microsatellite stability were calculated using the
MIRACUM-Pipe (v4.1.0, MSI-Sensor2).

4.3. Statistical Analysis

Unless otherwise specified, the analysis and visualizations were conducted using
R (version 4.3.2) with the utilization of the following packages: tidyverse (v2.0.0 [85]) for
data handling; maftools (v2.17.0, [86]) to summarize, analyze, and visualize variant data;
and ComplexHeatmap (v2.16.0) to draw heatmaps.

Progression-free survival (PFS) was calculated from the date of diagnosis and censored
at the time of the last clinical contact. PFS analysis, considering potential prognostic factors,
was conducted using the Kaplan–Meier method and univariate log-rank test. Furthermore,
hazard ratios were determined via a Cox proportional hazards regression model. Overall
survival (OS) was calculated from the date of diagnosis using the Kaplan–Meier method
and univariate log-rank test for comparison. The survival analysis was executed utilizing
the R package’s survivalAnalysis (0.3.0) and survminer (v0.4.9). Survival probability at a
certain time was calculated by applying a contsurvplot (v0.2.1) [87]. Associations between
mutations in potential driver genes and the estimated somatic signatures were investigated
using non-parametric testing (Wilcoxon test). Associations between tumor mutational
burden and somatic signatures were calculated using step-wise linear regression.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms252413418/s1.
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