Review to Elucidate the Correlation between Cuproptosis-Related Genes and Immune Infiltration for Enhancing the Detection and Treatment of Cervical Cancer
<p>Copper metabolism is regulated at both organ and cellular levels. Copper ion uptake is mediated by SLC31A2 and SLC31A1, and copper export is driven by ATP7B and ATP7A. In cells, copper is transported to different organelles (for bioavailability) via numerous copper-binding proteins (COX17, CCS, and ATOX1). The binding of MT2, GSH, and MT2 to copper can prevent the cytotoxicity of excess copper.</p> "> Figure 2
<p>Copper induces cell death in cancer therapeutics. Increased copper concentration in cancer cells increases ETC, DNA replication, glutamine transporters, harmful cuproptosis mediators, and reduced levels of positive cuproptosis mediators and antioxidant enzymes. These alterations result in cell death.</p> "> Figure 3
<p>Cuproptosis-related lncRNAs’ role in cervical cancer.</p> ">
Abstract
:1. Introduction
2. Metabolism of Copper at Both Cellular and Organ Level
2.1. Copper at Cellular Level
2.2. Copper at Organ Level
3. Crosstalk between Copper and Cancer
3.1. Copper and Oxidative Stress Generation
3.2. Copper and Angiogenesis Inhibition
3.3. Copper and Ubiquitin Proteasome System
4. Copper and Cervical Cancer
5. Cuproptosis, Cuproplasia, and Cancer
5.1. Cuproptosis Related Genes
5.2. Cuproptosis and lncRNAs (Long Non-Coding RNAs) in Cervical Cancer
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cu | Copper |
ROS | Reactive oxygen species |
DTCs | Dithiocarbamates |
TSCs | Thiosemicarbazones |
HFs | Hydroxyflavones |
Cur | Curcumin |
HQs | Hydroxyquinolines |
TCA | Tricarboxylic acid |
PBPD | [1-propyl-3,5-bis(2-bromobenzylidene)-4-piperidinone] |
TME | Tumor microenvironment |
lncRNAs | Long non-coding RNAs |
CRLs | Cuproptosis-related lncRNAs |
MTF1 | Metal regulatory transcription factor 1 |
LIPT1 | Lipoyltransferase 1 |
SLC31A1 | Solute carrier family 31 member 1 |
ETC | Electron transport chain |
ICB | Immune checkpoint blockade |
References
- Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022, 7, 378. [Google Scholar] [CrossRef] [PubMed]
- Cunzhi, H.; Jiexian, J.; Xianwen, Z.; Jingang, G.; Shumin, Z.; Lili, D. Serum and tissue levels of six trace elements and copper/zinc ratio in patients with cervical cancer and uterine myoma. Biol. Trace Element Res. 2003, 94, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Liu, J.; Liu, H.; Wang, Y. Comparison of serum and tissue levels of trace elements in different models of cervical cancer. Biol. Trace Element Res. 2014, 159, 346–350. [Google Scholar] [CrossRef] [PubMed]
- El-Kady, A.A.; Abdel-Wahhab, M.A. Occurrence of trace metals in foodstuffs and their health impact. Trends Food Sci. Technol. 2018, 75, 36–45. [Google Scholar] [CrossRef]
- Islam, R.; Akash, S.; Jony, M.H.; Alam, N.; Nowrin, F.T.; Rahman, M.; Rauf, A.; Thiruvengadam, M. Exploring the potential function of trace elements in human health: A therapeutic perspective. Mol. Cell. Biochem. 2023, 478, 2141–2171. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, K.; Cymbaluk-Płoska, A. The role of zinc and copper in gynecological malignancies. Nutrients 2020, 12, 3732. [Google Scholar] [CrossRef]
- Wang, L.-H.; Wu, C.-F.; Rajasekaran, N.; Shin, Y.K. Loss of tumor suppressor gene function in human cancer: An overview. Cell. Physiol. Biochem. 2019, 51, 2647–2693. [Google Scholar] [CrossRef]
- Urso, E.; Maffia, M. Behind the link between copper and angiogenesis: Established Mechanisms and an overview on the role of vascular copper transport systems. J. Vasc. Res. 2016, 52, 172–196. [Google Scholar] [CrossRef]
- Davalli, P.; Marverti, G.; Lauriola, A.; D’arca, D. Targeting Oxidatively induced DNA damage response in cancer: Opportunities for novel cancer therapies. Oxidative Med. Cell. Longev. 2018, 2018, 2389523. [Google Scholar] [CrossRef]
- Lloyd, D.R.; Phillips, D.H. Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) Fenton reactions: Evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative in-trastrand cross-links. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1999, 424, 23–36. [Google Scholar] [CrossRef]
- Lin, Y.-W. Rational design of metalloenzymes: From single to multiple active sites. Coord. Chem. Rev. 2017, 336, 1–27. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Chen, G.; Liu, S.; Guo, H.; Dong, X.; Wang, K.; Geng, H.; Jiang, J.; Li, X. Dissecting copper biology and cancer treatment: ‘Activating Cuproptosis or suppressing Cuproplasia’. Coord. Chem. Rev. 2023, 495, 215395. [Google Scholar] [CrossRef]
- Tian, Z.; Jiang, S.; Zhou, J.; Zhang, W. Copper homeostasis and cuproptosis in mitochondria. Life Sci. 2023, 334, 122223. [Google Scholar] [CrossRef] [PubMed]
- Saghiri, M.A.; Asatourian, A.; Orangi, J.; Sorenson, C.M.; Sheibani, N. Functional role of inorganic trace elements in angiogenesis—Part II: Cr, Si, Zn, Cu, and S. Crit. Rev. Oncol./Hematol. 2015, 96, 143–155. [Google Scholar] [CrossRef]
- Sravani, A.B.; Ghate, V.; Lewis, S. Human papillomavirus infection, cervical cancer and the less explored role of trace elements. Biol. Trace Element Res. 2023, 201, 1026–1050. [Google Scholar] [CrossRef]
- Bava, S.V.; Thulasidasan, A.K.T.; Sreekanth, C.N.; Anto, R.J. Cervical cancer: A comprehensive approach towards extermination. Ann. Med. 2016, 48, 149–161. [Google Scholar] [CrossRef]
- Paavonen, J. Human papillomavirus infection and the development of cervical cancer and related genital neoplasias. Int. J. Infect. Dis. 2007, 11, S3–S9. [Google Scholar] [CrossRef]
- Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet 2019, 393, 169–182. [Google Scholar] [CrossRef]
- Ferrall, L.; Lin, K.Y.; Roden, R.B.; Hung, C.-F.; Wu, T.-C. Cervical cancer immunotherapy: Facts and hopes. Clin. Cancer Res. 2021, 27, 4953–4973. [Google Scholar] [CrossRef]
- De Romaña, D.L.; Olivares, M.; Uauy, R.; Araya, M. Risks and benefits of copper in light of new insights of copper homeostasis. J. Trace Elements Med. Biol. 2011, 25, 3–13. [Google Scholar] [CrossRef]
- Van den Berghe, P.V.E.; Klomp, L.W.J. New developments in the regulation of intestinal copper absorption. Nutr. Rev. 2009, 67, 658–672. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Kang, R.; Klionsky, D.J.; Tang, D.; Liu, J.; Chen, X. Copper metabolism in cell death and autophagy. Autophagy 2023, 19, 2175–2195. [Google Scholar] [CrossRef] [PubMed]
- Culotta, V.C.; Klomp, L.W.J.; Strain, J.; Casareno, R.L.B.; Krems, B.; Gitlin, J.D. The copper chaperone for superoxide dismutase. J. Biol. Chem. 1997, 272, 23469–23472. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, K.; Sanghai, N.; Guo, Y.; Kong, J. Implication of post-translationally modified SOD1 in pathological aging. Geroscience 2021, 43, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef]
- Cobine, P.A.; Pierrel, F.; Winge, D.R. Copper trafficking to the mitochondrion and assembly of copper metalloen-zymes. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2006, 1763, 759–772. [Google Scholar] [CrossRef]
- Horn, D.; Barrientos, A. Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 2008, 60, 421–429. [Google Scholar] [CrossRef]
- Wang, Y.; Pei, P.; Yang, K.; Guo, L.; Li, Y. Copper in colorectal cancer: From copper-related mechanisms to clinical cancer therapies. Clin. Transl. Med. 2024, 14, e1724. [Google Scholar] [CrossRef]
- Cerqua, C.; Buson, L.; Trevisson, E. Mutations in Assembly Factors Required for the Biogenesis of Mitochondrial Respiratory Chain. Mitochondrial Dis. Theory Diagn. Ther. 2021, 33–68. [Google Scholar]
- Hatori, Y.; Lutsenko, S. The role of copper chaperone atox1 in coupling redox homeostasis to intracellular copper distribution. Antioxidants 2016, 5, 25. [Google Scholar] [CrossRef]
- Polishchuk, R.; Lutsenko, S. Golgi in copper homeostasis: A view from the membrane trafficking field. Histochem. Cell Biol. 2013, 140, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Wang, L.; Li, D.; Zhao, C.; Li, J.; Liu, T. Exploring the extended biological functions of the human copper chaperone of superoxide dismutase 1. Protein J. 2019, 38, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Luo, C.; Shan, C.; You, Q.; Lu, J.; Elf, S.; Zhou, Y.; Wen, Y.; Vinkenborg, J.L.; Fan, J.; et al. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat. Chem. 2015, 7, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Tsang, T.; Davis, C.I.; Brady, D.C. Copper biology. Curr. Biol. 2021, 31, R421–R427. [Google Scholar] [CrossRef] [PubMed]
- Navarrete, A.; González, A.; Gómez, M.; Contreras, R.A.; Díaz, P.; Lobos, G.; Brown, M.T.; Sáez, C.A.; Moenne, A. Copper excess detoxifi-cation is mediated by a coordinated and complementary induction of glutathione, phytochelatins and metallothioneins in the green seaweed Ulva compressa. Plant Physiol. Biochem. 2019, 135, 423–431. [Google Scholar] [CrossRef]
- Zalewska, M.; Trefon, J.; Milnerowicz, H. The role of metallothionein interactions with other proteins. Proteomics 2014, 14, 1343–1356. [Google Scholar] [CrossRef]
- Lutsenko, S. Dynamic and cell-specific transport networks for intracellular copper ions. J. Cell Sci. 2021, 134, jcs240523. [Google Scholar] [CrossRef]
- Aliaga, M.E.; López-Alarcón, C.; Bridi, R.; Speisky, H. Redox-implications associated with the formation of complexes between copper ions and reduced or oxidized glutathione. J. Inorg. Biochem. 2016, 154, 78–88. [Google Scholar] [CrossRef]
- Cherkasova, V. The Potential Molecular Mechanisms of Various Treatment Combinations between Cisplatin, Cannabidiol, Cannabis Extracts, and Intermittent Serum Starvation on Colorectal Cancer Cell Lines. Ph.D. Dissertation, University of Lethbridge, Lethbridge, AB, Canada, 2023. [Google Scholar]
- Lutsenko, S.; Gupta, A.; Burkhead, J.L.; Zuzel, V. Cellular multitasking: The dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Arch. Biochem. Biophys. 2008, 476, 22–32. [Google Scholar] [CrossRef]
- De Bie, P.; Muller, P.; Wijmenga, C.; Klomp, L.W.J. Molecular pathogenesis of Wilson and Menkes disease: Correlation of mutations with molecular defects and disease phenotypes. J. Med Genet. 2007, 44, 673–688. [Google Scholar] [CrossRef]
- Polishchuk, R.S.; Polishchuk, E.V. From and to the Golgi—Defining the Wilson disease protein road map. FEBS Lett. 2019, 593, 2341–2350. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.D. Cellular Copper Transport and Metabolism. Annu. Rev. Nutr. 2000, 20, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Denoyer, D.; Masaldan, S.; La Fontaine, S.; Cater, M.A. Targeting copper in cancer therapy: ‘Copper That Cancer’. Metallomics 2015, 7, 1459–1476. [Google Scholar] [CrossRef] [PubMed]
- Adzavon, K.P.; Zhao, W.; He, X.; Sheng, W. Ferroptosis resistance in cancer cells: Nanoparticles for combination therapy as a solution. Front. Pharmacol. 2024, 15, 1416382. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Tang, R.; Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol. 2022, 15, 174. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Zia-ur-Rehman, M.; Irshad, M.K.; Bharwana, S.A. The effect of excess copper on growth and physiology of important food crops: A review. Environ. Sci. Pollut. Res. 2015, 22, 8148–8162. [Google Scholar] [CrossRef]
- Huang, T.; Liu, Y.; Li, J.; Shi, B.; Shan, Z.; Shi, Z.; Yang, Z. Insights into prognosis and immune infiltration of cuprop-tosis-related genes in breast cancer. Front. Immunol. 2022, 13, 1054305. [Google Scholar] [CrossRef]
- Tang, X.; Yan, Z.; Miao, Y.; Ha, W.; Li, Z.; Yang, L.; Mi, D. Copper in cancer: From limiting nutrient to therapeutic target. Front. Oncol. 2023, 13, 1209156. [Google Scholar] [CrossRef]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef]
- Koo, S.; Park, O.K.; Kim, J.; Han, S.I.; Yoo, T.Y.; Lee, N.; Kim, Y.G.; Kim, H.; Lim, C.; Bae, J.-S.; et al. Enhanced chemodynamic therapy by Cu–Fe peroxide nanoparticles: Tumor microenvironment-mediated synergistic fenton reaction. ACS Nano 2022, 16, 2535–2545. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, J.; Ma, J.; Pang, S.; Zhang, T. A review on advanced oxidation processes homogeneously initiated by copper(II). Chem. Eng. J. 2022, 427, 131721. [Google Scholar] [CrossRef]
- Guo, W.-J.; Ye, S.-S.; Cao, N.; Huang, J.; Gao, J.; Chen, Q.-Y. ROS-mediated autophagy was involved in cancer cell death induced by novel copper(II) complex. Exp. Toxicol. Pathol. 2009, 62, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Yang, F.; Zhang, L.; Zhao, Q.; Wang, W.; Yin, L.; Chen, D.; Wang, M.; Han, S.; Xiao, H.; et al. Cuproptosis induced by ROS responsive nano-particles with elesclomol and copper combined with αPD-L1 for enhanced cancer immunotherapy. Adv. Mater. 2023, 35, 2212267. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; et al. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res. 2020, 39, 174. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Kang, Y.J. Role of copper in angiogenesis and its medicinal implications. Curr. Med. Chem. 2009, 16, 1304–1314. [Google Scholar] [CrossRef]
- Cucci, L.M.; Satriano, C.; Marzo, T.; La Mendola, D. Angiogenin and copper crossing in wound healing. Int. J. Mol. Sci. 2021, 22, 10704. [Google Scholar] [CrossRef]
- Lopez, J.; Ramchandani, D.; Vahdat, L. Copper depletion as a therapeutic strategy in cancer. Met. Ions Life Sci. 2019, 19, 9783110527872-018. [Google Scholar]
- Maiti, B.K.; Moura, J.J.G. Diverse biological roles of the tetrathiomolybdate anion. Coord. Chem. Rev. 2020, 429, 213635. [Google Scholar] [CrossRef]
- De Luca, A.; Barile, A.; Arciello, M.; Rossi, L. Copper homeostasis as target of both consolidated and innovative strategies of anti-tumor therapy. J. Trace Elements Med. Biol. 2019, 55, 204–213. [Google Scholar] [CrossRef]
- Shen, M.; Schmitt, S.; Buac, D.; Dou, Q.P. Targeting the ubiquitin–proteasome system for cancer therapy. Expert Opin. Ther. Targets 2013, 17, 1091–1108. [Google Scholar] [CrossRef]
- Ding, F.; Xiao, H.; Wang, M.; Xie, X.; Hu, F. The role of the ubiquitin-proteasome pathway in cancer development and treatment. Front. Biosci. 2014, 19, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Li, X.; Ren, Y.; Zhang, X. Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother. Pharmacol. 2021, 87, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yan, M.; Wang, Q.; Wang, H.; Wang, Z.; Zhao, J.; Li, J.; Zhang, Z. In vitro DNA-binding, anti-oxidant and anti-cancer activity of indole-2-carboxylic acid dinuclear copper (II) complexes. Molecules 2017, 22, 171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, H.; Yan, M.; Wang, H.; Zhang, C. Novel copper complexes as potential proteasome inhibitors for cancer treatment. Mol. Med. Rep. 2016, 15, 3–11. [Google Scholar] [CrossRef]
- Hancock, C.N.; Stockwin, L.H.; Han, B.; Divelbiss, R.D.; Jun, J.H.; Malhotra, S.V.; Hollingshead, M.G.; Newton, D.L. A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free. Radic. Biol. Med. 2011, 50, 110–121. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, M.; Zhao, Y. Association between serum copper levels and cervical cancer risk: A meta-analysis. Biosci. Rep. 2018, 38, BSR20180161. [Google Scholar] [CrossRef]
- González SE, F.; Anguiano, E.A.; Herrera, A.M.; Calzada, D.E.; Pichardo, C.O. Cytotoxic, pro-apoptotic, pro-oxidant, and non-genotoxic activities of a novel copper (II) complex against human cervical cancer. Toxicology 2013, 314, 155–165. [Google Scholar] [CrossRef]
- Cao, H.-Z.; Yang, W.-T.; Zheng, P.-S. Cytotoxic effect of disulfiram/copper on human cervical cancer cell lines and LGR5-positive cancer stem-like cells. BMC Cancer 2022, 22, 521. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R. Applications of nanotechnology in medical field: A brief review. Glob. Heal. J. 2023, 7, 70–77. [Google Scholar] [CrossRef]
- Pugazhendhi, A.; Edison, T.N.J.I.; Karuppusamy, I.; Kathirvel, B. Inorganic nanoparticles: A potential cancer therapy for human welfare. Int. J. Pharm. 2018, 539, 104–111. [Google Scholar] [CrossRef]
- Maliki, M.; Ifijen, I.H.; Ikhuoria, E.U.; Jonathan, E.M.; Onaiwu, G.E.; Archibong, U.D.; Ighodaro, A. Copper nano-particles and their oxides: Optical, anticancer and antibacterial properties. Int. Nano Lett. 2022, 12, 379–398. [Google Scholar] [CrossRef]
- Terna, A.D.; Elemike, E.E.; Mbonu, J.I.; Osafile, O.E.; Ezeani, R.O. The future of semiconductors nanoparticles: Synthesis, properties and applications. Mater. Sci. Eng. B 2021, 272, 115363. [Google Scholar] [CrossRef]
- Lu, W.; Yao, J.; Zhu, X.; Qi, Y. Nanomedicines: Redefining traditional medicine. Biomed. Pharmacother. 2021, 134, 111103. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Feng, X.; Gao, L.; Mickymaray, S.; Paramasivam, A.; Abdulaziz Alfaiz, F.; Almasmoum, H.A.; Ghaith, M.M.; Almaimani, R.A.; Aziz Ibrahim, I.A. Inhibiting the PI3K/AKT/mTOR signalling pathway with copper oxide nanoparticles from Houttuynia cordata plant: Attenuating the prolif-eration of cervical cancer cells. Artif. Cells Nanomed. Biotechnol. 2021, 49, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-Y.; Qiao, Z.; Wang, D.-B.; Hou, X.; Qiao, X.; Xie, C.-Z.; Qiang, Z.-Y.; Xu, J.-Y. A mixed-ligand copper(II) complex that inhibits growth and induces apoptosis by DNA targeting in human epithelial cervical cancer cells. Appl. Organomet. Chem. 2016, 31, e3651. [Google Scholar] [CrossRef]
- Panigrahi, L.L.; Samal, P.; Sahoo, S.R.; Sahoo, B.; Pradhan, A.K.; Mahanta, S.; Rath, S.K.; Arakha, M. Nanoparticles mediated diagnosis, treatment, and prevention of breast cancers. Nanoscale Adv. 2024, 6, 3699–3713. [Google Scholar] [CrossRef]
- Zughaibi, T.A.; Jabir, N.R.; Khan, A.U.; Khan, M.S.; Tabrez, S. Screening of Cu4O3 NPs efficacy and its anticancer potential against cervical cancer. Cell Biochem. Funct. 2023, 41, 1174–1187. [Google Scholar] [CrossRef]
- Fatfat, M.; Merhi, R.A.; Rahal, O.; Stoyanovsky, D.A.; Zaki, A.; Haidar, H.; Kagan, V.E.; Gali-Muhtasib, H.; Machaca, K. Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species. BMC Cancer 2014, 14, 527. [Google Scholar] [CrossRef]
- Dawczak-Dębicka, A.; Kufel-Grabowska, J.; Bartoszkiewicz, M.; Perdyan, A.; Jassem, J. Complementary and alternative therapies in oncology. Int. J. Environ. Res. Public Health 2022, 19, 5071. [Google Scholar] [CrossRef]
- Zafar, A.; Singh, S.; Ahmad, S.; Khan, S.; Siddiqi, M.I.; Naseem, I. Interaction of C20-substituted derivative of preg-nenolone acetate with copper (II) leads to ROS generation, DNA cleavage and apoptosis in cervical cancer cells: Therapeutic potential of copper chelation for cancer treatment. Bioorganic Chem. 2019, 87, 276–290. [Google Scholar] [CrossRef]
- Kavanagh, E.W.; Green, J.J. Toward Gene Transfer Nanoparticles as Therapeutics. Adv. Health Mater. 2022, 11, 2102145. [Google Scholar] [CrossRef] [PubMed]
- Tortella, G.R.; Pieretti, J.C.; Rubilar, O.; Fernández-Baldo, M.; Benavides-Mendoza, A.; Diez, M.C.; Seabra, A.B. Silver, copper and copper oxide nanoparticles in the fight against human viruses: Progress and perspectives. Crit. Rev. Biotechnol. 2021, 42, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Naz, S.; Gul, A.; Zia, M.; Mukhtiar, A. Toxicity of copper oxide nanoparticles: A review study. IET Nanobiotechnology 2020, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jagaran, K.; Singh, M. Copolymer-green-synthesized copper oxide nanoparticles enhance folate-targeting in cervical cancer cells in vitro. Polymers 2023, 15, 2393. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.P.; Chavali, M.S. Metal oxide nanoparticles as biomedical materials. Biomimetics 2020, 5, 27. [Google Scholar] [CrossRef]
- Peng, P.H.; Hsu, K.W.; Lai JC, Y.; Wu, K.J. The role of hypoxia-induced long noncoding RNAs (lncRNAs) in tu-morigenesis and metastasis. Biomed. J. 2021, 44, 521–533. [Google Scholar] [CrossRef]
- Dastan, D.; Londhe, P.U.; Chaure, N.B. Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method. J. Mater. Sci. Mater. Electron. 2014, 25, 3473–3479. [Google Scholar] [CrossRef]
- González-García, S.; Hamdan-Partida, A.; Ortiz Islas, E.E.; Zavala Sánchez, M.Á.; Ramos, J.P.; Delgado, R.D.M.; Bustos-Martínez, J. Cytotoxic Activity of Cu/TiO2 Nanoparticles on Uterine-Cervical Cancer Cells. J. Nanosci. Nanotechnol. 2020, 20, 7289–7298. [Google Scholar] [CrossRef]
- Zalevskaya, O.A.; Gur’eva, Y.A. Recent studies on the antimicrobial activity of copper complexes. Russ. J. Coord. Chem. 2021, 47, 861–880. [Google Scholar] [CrossRef]
- Ghosh, S.; Saha, R.; Sarkar, S.; Biswas, A.; Ghosh, K. Rhodamine hydrazide-linked naphthalimide derivative: Selective naked eye detection of Cu2+, S2− and understanding the therapeutic potential of the copper complex as an anti-cervical cancer agent. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 305, 123428. [Google Scholar] [CrossRef]
- Dutta, G.; Ghosh, D.; Venkatesan, K.; Chakrabarti, G.; Sugumaran, A.; Narayanasamy, D. Biogenic synthesis of copper oxide nanoparticles: Comprehensive in vitro profiling for cervical cancer treatment and antibacterial strategies. New J. Chem. 2024, 48, 10697–10716. [Google Scholar] [CrossRef]
- Nagajyothi, P.; Muthuraman, P.; Sreekanth, T.; Kim, D.H.; Shim, J. Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab. J. Chem. 2017, 10, 215–225. [Google Scholar] [CrossRef]
- Kuo, S.-H.; Wu, P.-T.; Huang, J.-Y.; Chiu, C.-P.; Yu, J.; Liao, M.-Y. Fabrication of anisotropic Cu ferrite-polymer core-shell nanoparticles for photodynamic ablation of cervical cancer cells. Nanomaterials 2020, 10, 2429. [Google Scholar] [CrossRef] [PubMed]
- Springer, C.; Humayun, D.; Skouta, R. Cuproptosis: Unraveling the Mechanisms of Copper-Induced Cell Death and Its Implication in Cancer Therapy. Cancers 2024, 16, 647. [Google Scholar] [CrossRef] [PubMed]
- Gohil, V.M. Repurposing elesclomol, an investigational drug for the treatment of copper metabolism disorders. Expert Opin. Investig. Drugs 2020, 30, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261. [Google Scholar] [CrossRef]
- Ke, D.; Zhang, Z.; Liu, J.; Chen, P.; Li, J.; Sun, X.; Chu, Y.; Li, L. Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Front. Cardiovasc. Med. 2023, 10, 1135723. [Google Scholar] [CrossRef]
- Linder, M.C. Ceruloplasmin and other copper binding components of blood plasma and their functions: An update. Metallomics 2016, 8, 887–905. [Google Scholar] [CrossRef]
- Kaler, S.G. ATP7A-related copper transport diseases—Emerging concepts and future trends. Nat. Rev. Neurol. 2011, 7, 15–29. [Google Scholar] [CrossRef]
- Kopnin, B.P. Targets of oncogenes and tumor suppressors: Key for understanding basic mechanisms of carcinogenesis. Biochem. C/C Biokhimiia 2000, 65, 2–27. [Google Scholar]
- Gupte, A.; Mumper, R.J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev. 2009, 35, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M.; Dou, Q.P.; Franz, K.J.; Gohil, V.M.; Gupta, S.; et al. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer 2022, 22, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-Y.; Shen, J.-Y.; Huang, K.; Wang, L.; Sethi, G.; Ma, Z. Cuproptosis in cancers: Function and implications from bench to bedside. Biomed. Pharmacother. 2024, 176, 116874. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yang, Z.; Wang, J.; Zhao, H. Cuproptosis: Unveiling a new frontier in cancer biology and therapeutics. Cell Commun. Signal. 2024, 22, 249. [Google Scholar] [PubMed]
- Li, D.; Jin, S.; Chen, P.; Zhang, Y.; Li, Y.; Zhong, C.; Fan, X.; Lin, H. Comprehensive analysis of cuproptosis-related lncRNAs for prognostic significance and immune microenvironment characterization in hepatocellular carcinoma. Front. Immunol. 2023, 13, 991604. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, M.; Liu, Y.; Si, Z. Cope with copper: From copper linked mechanisms to copper-based clinical cancer therapies. Cancer Lett. 2023, 561, 216157. [Google Scholar] [CrossRef]
- Xie, W.; Guo, Z.; Zhao, L.; Wei, Y. The copper age in cancer treatment: From copper metabolism to cuproptosis. Prog. Mater. Sci. 2023, 138, 101145. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, S.; Schrodi, S.J.; He, D. Cuproptosis and cuproptosis–related genes in rheumatoid arthritis: Implication, prospects, and perspectives. Front. Immunol. 2022, 13, 930278. [Google Scholar] [CrossRef]
- Liu, X.; Luo, B.; Wu, X.; Tang, Z. Cuproptosis and cuproptosis-related genes: Emerging potential therapeutic targets in breast cancer. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2023, 1878, 189013. [Google Scholar] [CrossRef]
- Xing, J.; Qiao, G.; Luo, X.; Liu, S.; Chen, S.; Ye, G.; Zhang, C.; Yi, J. Ferredoxin 1 regulates granulosa cell apoptosis and autophagy in polycystic ovary syndrome. Clin. Sci. 2023, 137, 453–468. [Google Scholar] [CrossRef]
- Tucci, S.; Alatibi, K.I.; Wehbe, Z. Altered Metabolic flexibility in inherited metabolic diseases of mitochondrial fatty acid metabolism. Int. J. Mol. Sci. 2021, 22, 3799. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Qi, T. The implications and prospect of cuproptosis-related genes and copper transporters in cancer pro-gression. Front. Oncol. 2023, 13, 1117164. [Google Scholar]
- Jiang, C.; Lu, Y.; Zhu, R.; Zong, Y.; Huang, Y.; Wang, D.; Da, Z.; Yu, B.; Shen, L.; Cao, Q. Pyruvate dehydrogenase beta subunit (Pdhb) promotes peripheral axon regeneration by regulating energy supply and gene expression. Exp. Neurol. 2023, 363, 114368. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Jiang, X.; Yu, M.; Wang, P.; Fu, L.; Zhang, G.; Cai, H. MTF1 has the potential as a diagnostic and prognostic marker for gastric cancer and is associated with good prognosis. Clin. Transl. Oncol. 2023, 25, 3241–3251. [Google Scholar] [CrossRef] [PubMed]
- Masisi, B.K.; El Ansari, R.; Alfarsi, L.; Rakha, E.A.; Green, A.R.; Craze, M.L. The role of glutaminase in cancer. Histopathology 2020, 76, 498–508. [Google Scholar] [CrossRef]
- Wan, H.; Yang, X.; Sang, G.; Ruan, Z.; Ling, Z.; Zhang, M.; Liu, C.; Hu, X.; Guo, T.; He, J.; et al. CDKN2A was a cuproptosis-related gene in regulating chemotherapy resistance by the MAGE-A family in breast cancer: Based on artificial intelligence (AI)-constructed pan-cancer risk model. Aging 2023, 15, 11244–11267. [Google Scholar] [CrossRef]
- Nandwani, A.; Rathore, S.; Datta, M. LncRNAs in cancer: Regulatory and therapeutic implications. Cancer Lett. 2020, 501, 162–171. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, L.; Duan, M.; Yang, Z.; Zhao, H.; Liu, B.; Wang, Y.; Deng, L.; Wang, C.; Jiang, X.; et al. Demethylases in tumors and the tumor microen-vironment: Key modifiers of N6-methyladenosine methylation. Biomed. Pharmacother. 2024, 174, 116479. [Google Scholar] [CrossRef]
- Barth, D.A.; Prinz, F.; Teppan, J.; Jonas, K.; Klec, C.; Pichler, M. Long-noncoding RNA (lncRNA) in the regulation of hypoxia-inducible factor (HIF) in cancer. Non-Coding RNA 2020, 6, 27. [Google Scholar] [CrossRef]
- Cheng, X.; Zeng, Z.; Yang, H.; Chen, Y.; Liu, Y.; Zhou, X.; Zhang, C.; Wang, G. Novel cuproptosis-related long non-coding RNA signature to predict prognosis in prostate carcinoma. BMC Cancer 2023, 23, 105. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, J.; Yu, J.; Liu, X.; Yu, C.; Hu, J.; Shi, H.; Ma, X. Long non-coding RNAs: Emerging roles in the immunosup-pressive tumor microenvironment. Front. Oncol. 2020, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Pan, C.; Wu, S.; Ye, F.; Yang, L. A combination of cuproptosis and lncRNAs predicts the prognosis and tumor immune microenvironment in cervical cancer. Discov. Oncol. 2024, 15, 116. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, L.; Gao, M.; Dong, S.; Hu, Y.; Hu, C. Signature of seven cuproptosis-related lncRNAs as a novel biomarker to predict prognosis and therapeutic response in cervical cancer. Front. Genet. 2022, 13, 989646. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, Y. Comprehensive analysis of cuproptosis-related lncRNAs model in tumor immune microenvironment and prognostic value of cervical cancer. Front. Pharmacol. 2022, 13, 1065701. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Liu, H.; Wang, D.; Su, L.; Yang, X. Integrative pan-cancer analysis of cuproplasia-associated genes for the genomic and clinical characterization of 33 tumors. Chin. Med. J. 2023, 136, 2621–2631. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, L.; Zhou, H.; Wang, J.; Xing, X. Prediction of prognosis and chemotherapeutic sensitivity based on cu-proptosis-associated lncRNAs in cervical squamous cell carcinoma and endocervical adenocarcinoma. Genes 2023, 14, 1381. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, J.; Xia, H.; Wu, Q.; Cai, X.; Ji, L.; Sun, Y. Construction and comprehensive analysis of a curoptosis-related lncRNA signature for predicting prognosis and immune response in cervical cancer. Front. Genet. 2023, 14, 1023613. [Google Scholar] [CrossRef]
- Bonnal, S.C.; López-Oreja, I.; Valcárcel, J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat. Rev. Clin. Oncol. 2020, 17, 457–474. [Google Scholar] [CrossRef]
- Bi, K.; Yang, J.; Wei, X. Alternative splicing variants involved in pyroptosis and cuproptosis contribute to phenotypic remodeling of the tumor microenvironment in cervical cancer. Reprod. Sci. 2023, 30, 3648–3660. [Google Scholar] [CrossRef]
- Nie, H.; Wang, H.; Zhang, M.; Ning, Y.; Chen, X.; Zhang, Z.; Hu, X.; Zhao, Q.; Chen, P.; Fang, J.; et al. Comprehensive analysis of cuproptosis-related genes in prognosis, tumor microenvironment infiltration, and immunotherapy response in gastric cancer. J. Cancer Res. Clin. Oncol. 2022, 149, 5453–5468. [Google Scholar] [CrossRef]
- Kang, J.; Jiang, J.; Xiang, X.; Zhang, Y.; Tang, J.; Li, L. Identification of a new gene signature for prognostic evaluation in cervical cancer: Based on cuproptosis-associated angiogenesis and multi-omics analysis. Cancer Cell Int. 2024, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Minion, L.E.; Tewari, K.S. Cervical cancer—State of the science: From angiogenesis blockade to checkpoint inhibition. Gynecol. Oncol. 2018, 148, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Lou, Q.-M.; Lai, F.-F.; Li, J.-W.; Mao, K.-J.; Wan, H.-T.; He, Y. Mechanisms of cuproptosis and its relevance to distinct diseases. Apoptosis 2024, 29, 981–1006. [Google Scholar] [CrossRef] [PubMed]
- Greish, K.; Pittalà, V.; Taurin, S.; Taha, S.; Bahman, F.; Mathur, A.; Jasim, A.; Mohammed, F.; El-Deeb, I.M.; Fredericks, S.; et al. Curcumin–Copper Complex Nanoparticles for the Management of Triple-Negative Breast Cancer. Nanomaterials 2018, 8, 884. [Google Scholar] [CrossRef]
- Zhang, M.J.; Shi, M.; Yu, Y.; Ou, R.; Ge, R.S.; Duan, P. Curcuminoid PBPD induces cuproptosis and endoplasmic re-ticulum stress in cervical cancer via the Notch1/RBP-J/NRF2/FDX1 pathway. Molecular Carcinogenesis. Mol. Carcinog. 2024, 63, 1449–1466. [Google Scholar] [CrossRef]
Copper Nanoparticles | Components of Nanoformulation | Mode of Action | References |
---|---|---|---|
Hc-CuONPs | Copper + plant extract of H. cordata | Apoptosis induction | [75] |
Altered PI3k/AKT/mTOR signaling | |||
Enhanced expression of pro-apoptotic proteins | |||
Reduced expression of anti-apoptotic protein | |||
Mixed-ligand copper(II) complex | Cu(L)(phen)]⋅MeOH (L = 4-chloro-2-[(2-hydroxyphenyl)iminomethyl]phenol) | Apoptosis induction | [76] |
Cell cycle arrest | |||
Induced DNA fragmentation | |||
Increased generation of reactive oxygen species | |||
Cu4O3 NPs | Cu4O3 + aqueous extract of pumpkin seeds | Increased generation of reactive oxygen species | [78] |
MMP modulation | |||
Suppressed cell adhesion/migration | |||
CuONPs | CuO + Melia azedarach leaf extract + chitosan + polyethylene glycol (PEG) + ligand folate | Binding and protection of the reporter gene | [85] |
Reduced cell viability | |||
Significant transgene expression | |||
Efficient gene delivery | |||
Cu/TiO2 | Copper complexes coupled to TiO2 nanoparticles | Increased cytotoxic potential | [88] |
Increased cell death | |||
CuL(SCN) | Single crystal of the copper-complex + NaSCN | Increased cytotoxicity to cancer cells | [90] |
ROS accumulation | |||
Initiation of nuclear blebbing | |||
DNA degradation | |||
CuO NPs | CuO + aqueous black bean extract | Increased ROS generation | [92] |
Altered mitochondrial structure | |||
Initiated lipid peroxidation of the liposomal membrane | |||
Suppressed cell proliferation | |||
Apoptosis induction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, P.; Ramniwas, S.; Pandey, S.; Lakhanpal, S.; Padmapriya, G.; Mishra, S.; Kaur, M.; Ashraf, A.; Kumar, M.R.; Khan, F. Review to Elucidate the Correlation between Cuproptosis-Related Genes and Immune Infiltration for Enhancing the Detection and Treatment of Cervical Cancer. Int. J. Mol. Sci. 2024, 25, 10604. https://doi.org/10.3390/ijms251910604
Pandey P, Ramniwas S, Pandey S, Lakhanpal S, Padmapriya G, Mishra S, Kaur M, Ashraf A, Kumar MR, Khan F. Review to Elucidate the Correlation between Cuproptosis-Related Genes and Immune Infiltration for Enhancing the Detection and Treatment of Cervical Cancer. International Journal of Molecular Sciences. 2024; 25(19):10604. https://doi.org/10.3390/ijms251910604
Chicago/Turabian StylePandey, Pratibha, Seema Ramniwas, Shivam Pandey, Sorabh Lakhanpal, G. Padmapriya, Shivang Mishra, Mandeep Kaur, Ayash Ashraf, M Ravi Kumar, and Fahad Khan. 2024. "Review to Elucidate the Correlation between Cuproptosis-Related Genes and Immune Infiltration for Enhancing the Detection and Treatment of Cervical Cancer" International Journal of Molecular Sciences 25, no. 19: 10604. https://doi.org/10.3390/ijms251910604
APA StylePandey, P., Ramniwas, S., Pandey, S., Lakhanpal, S., Padmapriya, G., Mishra, S., Kaur, M., Ashraf, A., Kumar, M. R., & Khan, F. (2024). Review to Elucidate the Correlation between Cuproptosis-Related Genes and Immune Infiltration for Enhancing the Detection and Treatment of Cervical Cancer. International Journal of Molecular Sciences, 25(19), 10604. https://doi.org/10.3390/ijms251910604