Chiral Drug Analysis in Forensic Chemistry: An Overview
<p>Application of chiral drug analysis in forensic chemistry.</p> "> Figure 2
<p>Relative number of each class of chiral drug referred in the reviewed enantioselective published studies and the analytical methods used for separation of the chiral drugs in biological fluids.</p> "> Figure 3
<p>Chromatogram representing the enantioseparation of <span class="html-italic">R</span>/<span class="html-italic">S</span>-AM, <span class="html-italic">R</span>/<span class="html-italic">S</span>-MA, <span class="html-italic">R</span>/<span class="html-italic">S</span>-MDA, <span class="html-italic">R</span>/<span class="html-italic">S</span>-MDMA and <span class="html-italic">R</span>/<span class="html-italic">S</span>-MDEA as <span class="html-italic">R</span>-MTPCl derivatives in whole blood concentrations at (<b>A</b>) 2 µg/g and (<b>B</b>) at 0.002 µg/g, respectively. Reproduction with permission of Elsevier (Figure 1 from Rasmussen et al. [<a href="#B67-molecules-23-00262" class="html-bibr">67</a>]).</p> "> Figure 4
<p>Relative number of each class of chiral drug referred in the reviewed enantioselective published studies and the analytical methods for separation of the chiral drugs in environmental samples.</p> "> Figure 5
<p>Chromatogram and mass spectra of WWTP effluent sample showing the enantiomers of FLX, VNF, BSP, MET and PHO. Reproduction with permission of Elsevier (Figure 2 from Ribeiro et al. [<a href="#B39-molecules-23-00262" class="html-bibr">39</a>]).</p> ">
Abstract
:1. Introduction
2. Chromatography in Chiral Analyses
3. Chiral Analyses in Biological Samples
3.1. Synthetic Psychoactive Drugs
3.2. Synthetic Opioids
3.3. Antidepressants
3.4. β-Blockers
3.5. Anticoagulants
3.6. Dissociative Anaesthetics
3.7. Bronchodilators
3.8. Anti-Helmintic
4. Chiral Analyses in the Aquatic Environment
5. General Conclusions and Further Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- IUPAC. Basic Terminology of Stereochemistry. Available online: https://goldbook.iupac.org/src/src_PAC1996682193.html (accessed on 13 November 2017).
- Calcaterra, A.; D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal. 2018, 147, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Tiritan, M.E.; Ribeiro, A.R.; Fernandes, C.; Pinto, M.M. Chiral Pharmaceuticals. In Kirk-Othmer Encyclopedia of Chemical Technology; Sons, J.W., Ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Nguyen, L.A.; He, H.; Pham-Huy, C. Chiral drugs: An overview. Int. J. Biomed. Sci. 2006, 2, 85–100. [Google Scholar] [PubMed]
- Tsujikawa, K.; Mikuma, T.; Kuwayama, K.; Miyaguchi, H.; Kanamori, T.; Iwata, Y.T.; Inoue, H. Profiling of seized methamphetamine putatively synthesized by reductive amination of 1-phenyl-2-propanone. Forensic Toxicol. 2012, 30, 70–75. [Google Scholar] [CrossRef]
- Tsujikawa, K.; Kuwayama, K.; Miyaguchi, H.; Kanamori, T.; Iwata, Y.T.; Inoue, H. Chemical profiling of seized methamphetamine putatively synthesized from phenylacetic acid derivatives. Forensic Sci. Int. 2013, 227, 42–44. [Google Scholar] [CrossRef] [PubMed]
- Binz, T.M.; Williner, E.; Strajhar, P.; Dolder, P.C.; Liechti, M.E.; Baumgartner, M.R.; Kraemer, T.; Steuer, A.E. Chiral analysis of amphetamines in hair by liquid chromatography-tandem mass spectrometry: Compliance-monitoring of attention deficit hyperactivity disorder (ADHD) patients under Elvanse® therapy and identification after controlled low-dose application. Drug Test. Anal. 2017, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fujii, H.; Hara, K.; Kageura, M.; Kashiwagi, M.; Matsusue, A.; Kubo, S.-I. High throughput chiral analysis of urinary amphetamines by GC-MS using a short narrow-bore capillary column. Forensic Toxicol. 2009, 27, 75–80. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Baker, D.R. Enantiomeric profiling of chiral drugs in wastewater and receiving waters. Environ. Sci. Technol. 2012, 46, 1681–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casale, J.F.; Colley, V.L.; Legatt, D.F. Determination of phenyltetrahydroimidazothiazole enantiomers (Levamisole/Dexamisole) in illicit cocaine seizures and in the urine of cocaine abusers via chiral capillary gas chromatography-flame-ionization detection: Clinical and forensic perspectives. J. Anal. Toxicol. 2012, 36, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.W. Chiral toxicology: It’s the same thing...only different. Toxicol. Sci. 2009, 110, 4–30. [Google Scholar] [CrossRef] [PubMed]
- Buchard, A.; Linnet, K.; Johansen, S.S.; Munkholm, J.; Fregerslev, M.; Morling, N. Postmortem blood concentrations of R- and S-enantiomers of methadone and EDDP in drug users: Influence of co-medication and p-glycoprotein genotype. J. Forensic Sci. 2010, 55, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Kikura-Hanajiri, R.; Kawamura, M.; Miyajima, A.; Sunouchi, M.; Goda, Y. Chiral analyses of dextromethorphan/levomethorphan and their metabolites in rat and human samples using LC-MS/MS. Anal. Bioanal. Chem. 2011, 400, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Segawa, H.; Iwata, Y.T.; Yamamuro, T.; Kuwayama, K.; Tsujikawa, K.; Kanamori, T.; Inoue, H. Enantioseparation of methamphetamine by supercritical fluid chromatography with cellulose-based packed column. Forensic Sci. Int. 2017, 273, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Płotka, J.M.; Biziuk, M.; Morrison, C.; Namieśnik, J. Pharmaceutical and forensic drug applications of chiral supercritical fluid chromatography. TrAC Trends Anal. Chem. 2014, 56, 74–89. [Google Scholar] [CrossRef]
- Hädener, M.; Bruni, P.S.; Weinmann, W.; Frubis, M.; Konig, S. Accelerated quantification of amphetamine enantiomers in human urine using chiral liquid chromatography and on-line column-switching coupled with tandem mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Baker, D.R. Estimation of community-wide drugs use via stereoselective profiling of sewage. Sci. Total Environ. 2012, 423, 142–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res. 2008, 42, 3498–3518. [Google Scholar] [CrossRef] [PubMed]
- Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G.M. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 2017, 174, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.R.; Maia, A.S.; Cass, Q.B.; Tiritan, M.E. Enantioseparation of chiral pharmaceuticals in biomedical and environmental analyses by liquid chromatography: An overview. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 968, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.R.; Barron, L.; Kasprzyk-Hordern, B. Illicit and pharmaceutical drug consumption estimated via wastewater analysis. Part A: Chemical analysis and drug use estimates. Sci. Total Environ. 2014, 487, 629–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castiglioni, S.; Thomas, K.V.; Kasprzyk-Hordern, B.; Vandam, L.; Griffiths, P. Testing wastewater to detect illicit drugs: State of the art, potential and research needs. Sci. Total Environ. 2014, 487, 613–620. [Google Scholar] [CrossRef] [PubMed]
- EMCDDA/Europol. Annual Report on the Implementation of Council Decision 2005/387/JHA; Europol: Lisbon, Portugal, 2011. [Google Scholar]
- Thomas, K.V.; Bijlsma, L.; Castiglioni, S.; Covaci, A.; Emke, E.; Grabic, R.; Hernández, F.; Karolak, S.; Kasprzyk-Hordern, B.; Lindberg, R.H.; et al. Comparing illicit drug use in 19 European cities through sewage analysis. Sci. Total Environ. 2012, 432, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Petrie, B.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. New Framework to Diagnose the Direct Disposal of Prescribed Drugs in Wastewater—A Case Study of the Antidepressant Fluoxetine. Environ. Sci. Technol. 2016, 50, 3781–3789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasquez, M.I.; Lambrianides, A.; Schneider, M.; Kümmerer, K.; Fatta-Kassinos, D. Environmental side effects of pharmaceutical cocktails: What we know and what we should know. J. Hazard. Mater. 2014, 279, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.; Xu, P.; Wang, P.; Lu, D.; Lu, Y.; Zhou, Z. Enantioselective degradation in sediment and aquatic toxicity to Daphnia magna of the herbicide lactofen enantiomers. J. Agric. Food Chem. 2010, 58, 2439–2445. [Google Scholar] [CrossRef] [PubMed]
- De Andrés, F.; Castañeda, G.; Ríos, Á. Use of toxicity assays for enantiomeric discrimination of pharmaceutical substances. Chirality 2009, 21, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Leis, H.J.; Rechberger, G.N.; Fauler, G.; Windischhofer, W. Enantioselective trace analysis of amphetamine in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Nyström, I.; Trygg, T.; Woxler, P.; Ahlner, J.; Kronstrand, R. Quantitation of R-(−)- and S-(+)-amphetamine in hair and blood by gas chromatography-mass spectrometry: An application to compliance monitoring in adult-attention deficit hyperactivity disorder treatment. J. Anal. Toxicol. 2005, 29, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Munoz, D.; Kasprzyk-Hordern, B. Multi-residue enantiomeric analysis of human and veterinary pharmaceuticals and their metabolites in environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry detection. Anal. Bioanal. Chem. 2015, 407, 9085–9104. [Google Scholar] [CrossRef] [PubMed]
- Iio, R.; Chinaka, S.; Takayama, N.; Hayakawa, K. Simultaneous Chiral Analysis of Methamphetamine and its Metabolites by Capillary Electrophoresis/Mass Spectrometry with Direct Injection of Urine. J. Health Sci. 2005, 51, 693–701. [Google Scholar] [CrossRef]
- Musshoff, F.; Madea, B.; Stuber, F.; Stamer, U.M. Enantiomeric determination of tramadol and O-desmethyltramadol by liquid chromatography-mass spectrometry and application to postoperative patients receiving tramadol. J. Anal. Toxicol. 2006, 30, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.; Ribeiro, A.; Maia, A.; Tiritan, M. Occurrence of Chiral Bioactive Compounds in the Aquatic Environment: A Review. Symmetry 2017, 9, 215. [Google Scholar] [CrossRef]
- Iwamuro, Y.; Iio-Ishimaru, R.; Chinaka, S.; Takayama, N.; Kodama, S.; Hayakawa, K. Reproducible chiral capillary electrophoresis of methamphetamine and its related compounds using a chemically modified capillary having diol groups. Forensic Toxicol. 2010, 28, 19–24. [Google Scholar] [CrossRef]
- Ma, R.; Wang, B.; Lu, S.; Zhang, Y.; Yin, L.; Huang, J.; Deng, S.; Wang, Y.; Yu, G. Characterization of pharmaceutically active compounds in Dongting Lake, China: Occurrence, chiral profiling and environmental risk. Sci. Total Environ. 2016, 557–558, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.R.; Afonso, C.M.; Castro, P.M.; Tiritan, M.E. Enantioselective HPLC analysis and biodegradation of atenolol, metoprolol and fluoxetine. Environ. Chem. Lett. 2013, 11, 83–90. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Santos, L.H.; Maia, A.S.; Delerue-Matos, C.; Castro, P.M.; Tiritan, M.E. Enantiomeric fraction evaluation of pharmaceuticals in environmental matrices by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2014, 1363, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Souchier, M.; Benali-Raclot, D.; Casellas, C.; Ingrand, V.; Chiron, S. Enantiomeric fractionation as a tool for quantitative assessment of biodegradation: The case of metoprolol. Water Res. 2016, 95, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Kosugi, Y.; Hosaka, M.; Nishimura, T.; Nakae, D. Occurrence and behavior of the chiral anti-inflammatory drug naproxen in an aquatic environment. Environ. Toxicol. Chem. 2014, 33, 2671–2678. [Google Scholar] [CrossRef] [PubMed]
- Wan Raihana, W.A.; Gan, S.H.; Tan, S.C. Stereoselective method development and validation for determination of concentrations of amphetamine-type stimulants and metabolites in human urine using a simultaneous extraction–chiral derivatization approach. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Deng, M.; Huang, P.; Yu, J.; Guo, X.; Zhao, L. Solid-phase extraction combined with dispersive liquid-liquid microextraction and chiral liquid chromatography-tandem mass spectrometry for the simultaneous enantioselective determination of representative proton-pump inhibitors in water samples. Anal. Bioanal. Chem. 2016, 408, 6381–6392. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Hijosa, M.; Bayona, J.M. Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen. Chemosphere 2009, 75, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C.; Smith, F.J.; Tomaszewski, T.; Stawiarska, K.; Biziuk, M. Chiral Gas Chromatography as a Tool for Investigations into Illicitly Manufactured Methylamphetamine. Chirality 2011, 23, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Płotka, J.M.; Biziuk, M.; Morrison, C. Common methods for the chiral determination of amphetamine and related compounds I. Gas, liquid and thin-layer chromatography. TrAC Trends Anal. Chem. 2011, 30, 1139–1158. [Google Scholar] [CrossRef]
- Peng, L.; Jayapalan, S.; Chankvetadze, B.; Farkas, T. Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. J. Chromatogr. A 2010, 1217, 6942–6955. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Wang, B.; Luo, F.; Shen, G.J.; Wang, Z.Q.; Guo, M. Application of dispersive liquid-liquid microextraction and CE with UV detection for the chiral separation and determination of the multiple illicit drugs on forensic samples. Forensic Sci. Int. 2011, 209, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.F.; Yegles, M.; Chung, H.; Wennig, R. Sensitive, rapid and validated gas chromatography/negative ion chemical ionization-mass spectrometry assay including derivatisation with a novel chiral agent for the enantioselective quantification of amphetamine-type stimulants in hair. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 842, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Schwaninger, A.E.; Meyer, M.R.; Maurer, H.H. Chiral drug analysis using mass spectrometric detection relevant to research and practice in clinical and forensic toxicology. J. Chromatogr. A 2012, 1269, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Lämmerhofer, M. Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. J. Chromatogr. A 2010, 1217, 814–856. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Tiritan, M.E.; Pinto, M. Small Molecules as Chromatographic Tools for HPLC Enantiomeric Resolution: Pirkle-Type Chiral Stationary Phases Evolution. Chromatographia 2013, 76, 871–897. [Google Scholar] [CrossRef]
- Haginaka, J. Recent progresses in protein-based chiral stationary phases for enantioseparations in liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 875, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Castro, P.; Tiritan, M. Environmental Fate of Chiral Pharmaceuticals: Determination, Degradation and Toxicity. In Environmental Chemistry for a Sustainable World; Springer: Berlin/Heidelberg, Germany, 2012; Volume 2, pp. 3–45. [Google Scholar]
- Zaugg, S.; Thormann, W. Enantioselective determination of drugs in body fluids by capillary electrophoresis. J. Chromatogr. A 2000, 875, 27–41. [Google Scholar] [CrossRef]
- Patel, B.K.; Hutt, A.J. Stereoselectivity in Drug Action and Disposition: An Overview. In Chirality in Drug Design and Development; Reddy, I.K., Mehvar, R., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Hutt, A.J.; Valentova, J. The chiral switch: The development of single enantiomer drugs from racemates. Univ. Comen. Acta Fac. Pharm. 2003, 50, 7–23. [Google Scholar]
- Iwata, Y.T.; Inoue, H.; Kuwayama, K.; Kanamori, T.; Tsujikawa, K.; Miyaguchi, H.; Kishi, T. Forensic application of chiral separation of amphetamine-type stimulants to impurity analysis of seized methamphetamine by capillary electrophoresis. Forensic Sci. Int. 2006, 161, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Itoh, S.; Inoue, N.; Kudo, K.; Ikeda, N. High-performance liquid chromatographic-mass spectrometric determination of methamphetamine and amphetamine enantiomers, desmethylselegiline and selegiline, in hair samples of long-term methamphetamine abusers or selegiline users. J. Anal. Toxicol. 2006, 30, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Shen, B.; Shi, Y.; Xiang, P.; Yu, Z. Chiral separation and determination of R/S-methamphetamine and its metabolite R/S-amphetamine in urine using LC-MS/MS. Forensic Sci. Int. 2015, 246, 72–78. [Google Scholar] [CrossRef] [PubMed]
- World Anti-Doping Agency (WADA). Prohibited List—The World Anti-Doping Code: International Standard; WADA: Montreal, QC, Canada, 2018. [Google Scholar]
- Evans, S.E.; Davies, P.; Lubben, A.; Kasprzyk-Hordern, B. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry. Anal. Chim. Acta 2015, 882, 112–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newmeyer, M.N.; Concheiro, M.; Huestis, M.A. Rapid quantitative chiral amphetamines liquid chromatography-tandem mass spectrometry: Method in plasma and oral fluid with a cost-effective chiral derivatizing reagent. J. Chromatogr. A 2014, 1358, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Ilieva, I.P.; Farah, M.J. Enhancement stimulants: Perceived motivational and cognitive advantages. Front. Neurosci. 2013, 7, 198. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, R.; Rasmussen, H.B.; Linnet, K.; Consortium, I. Enantioselective determination of methylphenidate and ritalinic acid in whole blood from forensic cases using automated solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2012, 36, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Mayerhofer, A.; Kovar, K.A.; Schmidt, W.J. Enantioselective metabolism of the designer drugs 3,4-methylenedioxymethamphetamine (‘ecstasy’) and 3,4-methylenedioxyethylamphetamine (‘eve’) isomers in rat brain and blood. Neurosci. Lett. 2002, 330, 193–197. [Google Scholar] [CrossRef]
- Rasmussen, L.B.; Olsen, K.H.; Johansen, S.S. Chiral separation and quantification of R/S-amphetamine, R/S-methamphetamine, R/S-MDA, R/S-MDMA, and R/S-MDEA in whole blood by GC-EI-MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 842, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Schwaninger, A.E.; Meyer, M.R.; Barnes, A.J.; Kolbrich-Spargo, E.A.; Gorelick, D.A.; Goodwin, R.S.; Huestis, M.A.; Maurer, H.H. Stereoselective urinary MDMA (ecstasy) and metabolites excretion kinetics following controlled MDMA administration to humans. Biochem. Pharmacol. 2012, 83, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Strano-Rossi, S.; Botre, F.; Bermejo, A.M.; Tabernero, M.J. A rapid method for the extraction, enantiomeric separation and quantification of amphetamines in hair. Forensic Sci. Int. 2009, 193, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.M.; Wang, T.C.; Giang, Y.S. Simultaneous determination of amphetamine and methamphetamine enantiomers in urine by simultaneous liquid-liquid extraction and diastereomeric derivatization followed by gas chromatographic-isotope dilution mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 816, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.T.; Pilowsky, D.J.; Schlenger, W.E.; Galvin, D.M. Misuse of methamphetamine and prescription stimulants among youths and young adults in the community. Drug Alcohol. Depend. 2007, 89, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Musshoff, F.; Madea, B. Fatality due to ingestion of tramadol alone. Forensic Sci. Int. 2001, 116, 197–199. [Google Scholar] [CrossRef]
- Grond, S.; Sablotzki, A. Clinical pharmacology of tramadol. Clin. Pharmacokinet. 2004, 43, 879–923. [Google Scholar] [CrossRef] [PubMed]
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). European Drug Report 2017: Trends and Developments; Publications Office of the European Union: Luxembourg, Portugal, 2017. [Google Scholar]
- Chytil, L.; Matouskova, O.; Cerna, O.; Pokorna, P.; Vobruba, V.; Perlik, F.; Slanar, O. Enantiomeric determination of tramadol and O-desmethyltramadol in human plasma by fast liquid chromatographic technique coupled with mass spectrometric detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Paar, W.D.; Poche, S.; Gerloff, J.; Dengler, H.J. Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur. J. Clin. Pharmacol. 1997, 53, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Preissner, S.C.; Hoffmann, M.F.; Preissner, R.; Dunkel, M.; Gewiess, A.; Preissner, S. Polymorphic Cytochrome P450 Enzymes (CYPs) and Their Role in Personalized Therapy. PLoS ONE 2013, 8, e82562. [Google Scholar] [CrossRef] [PubMed]
- Roussin, A.; Doazan-d’Ouince, O.; Geniaux, H.; Halberer, C. Evaluation of Abuse and Dependence in Addiction Monitoring Systems: Tramadol as an example. Therapie 2015, 70, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Verri, P.; Rustichelli, C.; Palazzoli, F.; Vandelli, D.; Marchesi, F.; Ferrari, A.; Licata, M. Tramadol chronic abuse: An evidence from hair analysis by LC tandem MS. J. Pharm. Biomed. Anal. 2015, 102, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Fawzi, M.M. Medicolegal aspects concerning tramadol abuse. The new Middle East youth plague: An Egyptian overview 2010. J. Forensic Res. 2011, 2, e130. [Google Scholar] [CrossRef]
- De Moraes, N.V.; Lauretti, G.R.; Napolitano, M.N.; Santos, N.R.; Godoy, A.L.; Lanchote, V.L. Enantioselective analysis of unbound tramadol, O-desmethyltramadol and N-desmethyltramadol in plasma by ultrafiltration and LC-MS/MS: Application to clinical pharmacokinetics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 880, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Jantos, R.; Skopp, G. Postmortem blood and tissue concentrations of R- and S-enantiomers of methadone and its metabolite EDDP. Forensic Sci. Int. 2013, 226, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rosas, M.E.; Medrano, J.G.; Epstein, D.H.; Moolchan, E.T.; Preston, K.L.; Wainer, I.W. Determination of total and free concentrations of the enantiomers of methadone and its metabolite (2-ethylidene-1,5-dimethyl-3,3-diphenyl-pyrrolidine) in human plasma by enantioselective liquid chromatography with mass spectrometric detection. J. Chromatogr. A 2005, 1073, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Bouquie, R.; Hernando, H.; Deslandes, G.; Ben Mostefa Daho, A.; Renaud, C.; Grall-Bronnec, M.; Dailly, E.; Jolliet, P. Chiral on-line solid phase extraction coupled to liquid chromatography-tandem mass spectrometry assay for quantification of (R) and (S) enantiomers of methadone and its main metabolite in plasma. Talanta 2015, 134, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Moody, D.E.; Lin, S.N.; Chang, Y.; Lamm, L.; Greenwald, M.K.; Ahmed, M.S. An enantiomer-selective liquid chromatography-tandem mass spectrometry method for methadone and EDDP validated for use in human plasma, urine, and liver microsomes. J. Anal. Toxicol. 2008, 32, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Aumatell, A.; Wells, R.J. Chiral differentiation of the optical isomers of racemethorphan and racemorphan in urine by capillary zone electrophoresis. J. Chromatogr. Sci. 1993, 31, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.A.; Sullivan, M.A. Abuse and misuse of antidepressants. Subst. Abuse Rehabil. 2014, 5, 107–120. [Google Scholar] [PubMed]
- Center, A. Antidepressant Addiction and Abuse. Available online: https://www.addictioncenter.com/stimulants/antidepressants/ (accessed on 5 December 2017).
- Peles, E.; Schreiber, S.; Adelson, M. Tricyclic antidepressants abuse, with or without benzodiazepines abuse, in former heroin addicts currently in methadone maintenance treatment (MMT). Eur. Neuropsychopharmacol. 2008, 18, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Gatti, G.; Bonomi, I.; Marchiselli, R.; Fattore, C.; Spina, E.; Scordo, G.; Pacifici, R.; Perucca, E. Improved enantioselective assay for the determination of fluoxetine and norfluoxetine enantiomers in human plasma by liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 784, 375–383. [Google Scholar] [CrossRef]
- Unceta, N.; Barrondo, S.; de Azúa, I.R.; Gómez-Caballero, A.; Goicolea, M.A.; Sallés, J.; Barrio, R.J. Determination of fluoxetine, norfluoxetine and their enantiomers in rat plasma and brain samples by liquid chromatography with fluorescence detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 852, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Kelly, T.; Doble, P.; Dawson, M. Chiral analysis of methadone and its major metabolites (EDDP and EMDP) by liquid chromatography–mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 814, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wang, S.; Bakhtiar, R. Enantiomeric separation and quantification of fluoxetine (Prozac) in human plasma by liquid chromatography/tandem mass spectrometry using liquid-liquid extraction in 96-well plate format. Rapid Commun. Mass Spectrom. 2002, 16, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Gasser, G.; Pankratov, I.; Elhanany, S.; Werner, P.; Gun, J.; Gelman, F.; Lev, O. Field and laboratory studies of the fate and enantiomeric enrichment of venlafaxine and O-desmethylvenlafaxine under aerobic and anaerobic conditions. Chemosphere 2012, 88, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Kingbäck, M.; Josefsson, M.; Karlsson, L.; Ahlner, J.; Bengtsson, F.; Kugelberg, F.C.; Carlsson, B. Stereoselective determination of venlafaxine and its three demethylated metabolites in human plasma and whole blood by liquid chromatography with electrospray tandem mass spectrometric detection and solid phase extraction. J. Pharm. Biomed. Anal. 2010, 53, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, L.; Schmitt, U.; Josefsson, M.; Carlsson, B.; Ahlner, J.; Bengtsson, F.; Kugelberg, F.C.; Hiemke, C. Blood-brain barrier penetration of the enantiomers of venlafaxine and its metabolites in mice lacking P-glycoprotein. Eur. Neuropsychopharmacol. 2010, 20, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Öhman, D.; Cherma, M.D.; Norlander, B.; Bengtsson, F. Determination of serum reboxetine enantiomers in patients on chronic medication with racemic reboxetine. Ther. Drug Monit. 2003, 25, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Siluk, D.; Mager, D.E.; Gronich, N.; Abernethy, D.; Wainer, I.W. HPLC-atmospheric pressure chemical ionization mass spectrometric method for enantioselective determination of R,S-propranolol and R,S-hyoscyamine in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 859, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Poggi, J.C.; Da Silva, F.G.; Coelho, E.B.; Marques, M.P.; Bertucci, C.; Lanchote, V.L. Analysis of carvedilol enantiomers in human plasma using chiral stationary phase column and liquid chromatography with tandem mass spectrometry. Chirality 2012, 24, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Lee, J.H.; Ko, M.Y.; Shin, K.S.; Kang, J.S.; Mar, W.C.; Youm, J.R. Determination of metoprolol enantiomers in human urine by GC-MS using (−)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride as a chiral derivatizing agent. Chromatographia 2002, 55, 81–85. [Google Scholar] [CrossRef]
- Dethy, J.M.; De Broux, S.; Lesne, M.; Longstreth, J.; Gilbert, P. Stereoselective determination of verapamil and norverapamil by capillary electrophoresis. J. Chromatogr. B Biomed. Appl. 1994, 654, 121–127. [Google Scholar] [CrossRef]
- Martin, L.J.; Piltonen, M.H.; Gauthier, J.; Convertino, M.; Acland, E.L.; Dokholyan, N.V.; Mogil, J.S.; Diatchenko, L.; Maixner, W. Differences in the Antinociceptive Effects and Binding Properties of Propranolol and Bupranolol Enantiomers. J. Pain 2015, 16, 1321–1333. [Google Scholar] [CrossRef] [PubMed]
- Piatkov, I.; Rochester, C.; Jones, T.; Boyages, S. Warfarin toxicity and individual variability-clinical case. Toxins 2010, 2, 2584–2592. [Google Scholar] [CrossRef] [PubMed]
- Coe, R.A.; Rathe, J.O.; Lee, J.W. Supercritical fluid chromatography-tandem mass spectrometry for fast bioanalysis of R/S-warfarin in human plasma. J. Pharm. Biomed. Anal. 2006, 42, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Wo, S.K.; Lo, C.M.; Zhou, L.; Cheng, G.; You, J.H. Simultaneous measurement of S-warfarin, R-warfarin, S-7-hydroxywarfarin and R-7-hydroxywarfarin in human plasma by liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2010, 52, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zheng, J.; Shamsi, S.A. Separation and determination of warfarin enantiomers in human plasma using a novel polymeric surfactant for micellar electrokinetic chromatography-mass spectrometry. J. Chromatogr. A 2007, 1159, 208–216. [Google Scholar] [CrossRef] [PubMed]
- NIH. Hallucinogens. Available online: https://www.drugabuse.gov/publications/drugfacts/hallucinogens (accessed on 16 January 2018).
- Powers, A.R.; Gancsos, M.G.; Finn, E.S.; Morgan, P.T.; Corlett, P.R. Ketamine-Induced Hallucinations. Psychopathology 2015, 48, 376–385. [Google Scholar] [CrossRef] [PubMed]
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Report on the Risk Assessment of Ketamine in the Framework of the Joint Action on New Synthetic Drugs; Office for Official Publications of the European Communities: Luxembourg, Portugal, 2002. [Google Scholar]
- Porpiglia, N.; Musile, G.; Bortolotti, F.; De Palo, E.F.; Tagliaro, F. Chiral separation and determination of ketamine and norketamine in hair by capillary electrophoresis. Forensic Sci. Int. 2016, 266, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Rosas, M.E.; Patel, S.; Wainer, I.W. Determination of the enantiomers of ketamine and norketamine in human plasma by enantioselective liquid chromatography–mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 794, 99–108. [Google Scholar] [CrossRef]
- Matera, M.G.; Calzetta, L.; Rogliani, P.; Bardaro, F.; Page, C.P.; Cazzola, M. Evaluation of the effects of the R- and S-enantiomers of salbutamol on equine isolated bronchi. Pulm. Pharmacol. Ther. 2011, 24, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Henderson, W.R., Jr.; Banerjee, E.R.; Chi, E.Y. Differential effects of (S)- and (R)-enantiomers of albuterol in a mouse asthma model. J. Allergy Clin. Immunol. 2005, 116, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Peters, F.T.; Kraemer, T.; Maurer, H.H. Drug testing in blood: Validated negative-ion chemical ionization gas chromatographic-mass spectrometric assay for determination of amphetamine and methamphetamine enantiomers and its application to toxicology cases. Clin. Chem. 2002, 48, 1472–1485. [Google Scholar] [PubMed]
- Holler, J.M.; Vorce, S.P.; Bosy, T.Z.; Jacobs, A. Quantitative and isomeric determination of amphetamine and methamphetamine from urine using a nonprotic elution solvent and R(−)-α-methoxy-α-trifluoromethylphenylacetic acid chloride derivatization. J. Anal. Toxicol. 2005, 29, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.D.; Jemionek, J.; Lesser, D.; Jacobs, A.; Searles, D.A. Enantiomeric separation and quantitation of (+/−)-amphetamine, (+/−)-methamphetamine, (+/−)-MDA, (+/−)-MDMA, and (+/−)-MDEA in urine specimens by GC-EI-MS after derivatization with (R)-(−)- or (S)-(+)-alpha-methoxy-alpha-(trifluoromethy)phenylacetyl chloride (MTPA). J. Anal. Toxicol. 2004, 28, 449–455. [Google Scholar] [PubMed]
- Aasim, W.R.; Gan, S.H.; Tan, S.C. Development of a simultaneous liquid-liquid extraction and chiral derivatization method for stereospecific GC-MS analysis of amphetamine-type stimulants in human urine using fractional factorial design. Biomed. Chromatogr. 2008, 22, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Iio, R.; Chinaka, S.; Tanaka, S.; Takayama, N.; Hayakawa, K. Simultaneous chiral determination of methamphetamine and its metabolites in urine by capillary electrophoresis-mass spectrometry. Analyst 2003, 128, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Foster, B.S.; Gilbert, D.D.; Hutchaleelaha, A.; Mayersohn, M. Enantiomeric determination of amphetamine and methamphetamine in urine by precolumn derivatization with Marfey’s reagent and HPLC. J. Anal. Toxicol. 1998, 22, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.F.; Zeng, S. Analysis of enantiomers of chiral phenethylamine drugs by capillary gas chromatography/mass spectrometry/flame-ionization detection and pre-column chiral derivatization. J. Biochem. Biophys. Methods 2002, 54, 103–113. [Google Scholar] [CrossRef]
- Helmlin, H.J.; Bracher, K.; Bourquin, D.; Vonlanthen, D.; Brenneisen, R. Analysis of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites in plasma and urine by HPLC-DAD and GC-MS. J. Anal. Toxicol. 1996, 20, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Steuer, A.E.; Schmidhauser, C.; Liechti, M.E.; Kraemer, T. Development and validation of an LC-MS/MS method after chiral derivatization for the simultaneous stereoselective determination of methylenedioxy-methamphetamine (MDMA) and its phase I and II metabolites in human blood plasma. Drug Test. Anal. 2015, 7, 592–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christoffersen, D.J.; Brasch-Andersen, C.; Thomsen, J.L.; Worm-Leonhard, M.; Damkier, P.; Brosen, K. Quantification of morphine, morphine 6-glucuronide, buprenorphine, and the enantiomers of methadone by enantioselective mass spectrometric chromatography in whole blood. Forensic Sci. Med. Pathol. 2015, 11, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Campanero, M.A.; Garcia-Quetglas, E.; Sadaba, B.; Azanza, J.R. Simultaneous stereoselective analysis of tramadol and its primary phase I metabolites in plasma by liquid chromatography. Application to a pharmacokinetic study in humans. J. Chromatogr. A 2004, 1031, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, R.S.; Brøsen, K.; Nielsen, F. Enantioselective HPLC method for quantitative determination of tramadol and O-desmethyltramadol in plasma and urine: Application to clinical studies. Chromatographia 2003, 57, 279–285. [Google Scholar] [CrossRef]
- Mehvar, R.; Elliott, K.; Parasrampuria, R.; Eradiri, O. Stereospecific high-performance liquid chromatographic analysis of tramadol and its O-demethylated (M1) and N,O-demethylated (M5) metabolites in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 852, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Ardakani, Y.H.; Mehvar, R.; Foroumadi, A.; Rouini, M.R. Enantioselective determination of tramadol and its main phase I metabolites in human plasma by high-performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 864, 109–115. [Google Scholar]
- Chytil, L.; Sticha, M.; Matouskova, O.; Perlik, F.; Slanar, O. Enatiomeric determination of tramadol and O-desmethyltramadol in human urine by gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 1937–1942. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.; Marques, M.P.; Coelho, E.B.; Lanchote, V.L. Enantioselective analysis of citalopram and demethylcitalopram in human and rat plasma by chiral LC-MS/MS: Application to pharmacokinetics. Chirality 2007, 19, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Leis, H.J.; Windischhofer, W. Gas chromatography-negative ion chemical ionisation mass spectrometry using O-(pentafluorobenzyloxycarbonyl)-2,3,4,5-tetrafluorobenzoyl derivatives for the quantitative determination of methylphenidate in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 2299–2303. [Google Scholar] [CrossRef] [PubMed]
- Leis, H.J.; Schutz, H.; Windischhofer, W. Quantitative determination of methylphenidate in plasma by gas chromatography negative ion chemical ionisation mass spectrometry using O-(pentafluorobenzyloxycarbonyl)-benzoyl derivatives. Anal. Bioanal. Chem. 2011, 400, 2663–2670. [Google Scholar] [CrossRef] [PubMed]
- LeVasseur, N.L.; Zhu, H.J.; Markowitz, J.S.; DeVane, C.L.; Patrick, K.S. Enantiospecific gas chromatographic-mass spectrometric analysis of urinary methylphenidate: Implications for phenotyping. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 862, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, F.; Li, H.D. Simultaneous stereoselective analysis of venlafaxine and O-desmethylvenlafaxine enantiomers in human plasma by HPLC-ESI/MS using a vancomycin chiral column. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 850, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Wang, S.; Kratz, J.; Cyronak, M.J. Stereoselective analysis of carvedilol in human plasma using HPLC/MS/MS after chiral derivatization. J. Pharm. Biomed. Anal. 2004, 36, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Servais, A.C.; Fillet, M.; Mol, R.; Somsen, G.W.; Chiap, P.; de Jong, G.J.; Crommen, J. On-line coupling of cyclodextrin mediated nonaqueous capillary electrophoresis to mass spectrometry for the determination of salbutamol enantiomers in urine. J. Pharm. Biomed. Anal. 2006, 40, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.R.; Afonso, C.M.; Castro, P.M.; Tiritan, M.E. Enantioselective biodegradation of pharmaceuticals, alprenolol and propranolol, by an activated sludge inoculum. Ecotoxicol. Environ. Saf. 2013, 87, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.R.; Maia, A.S.; Moreira, I.S.; Afonso, C.M.; Castro, P.M.; Tiritan, M.E. Enantioselective quantification of fluoxetine and norfluoxetine by HPLC in wastewater effluents. Chemosphere 2014, 95, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.E.; Kasprzyk-Hordern, B. Applications of chiral chromatography coupled with mass spectrometry in the analysis of chiral pharmaceuticals in the environment. TrEAC Trends Environ. Anal. Chem. 2014, 1, e34–e51. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Illicit drugs and pharmaceuticals in the environment—Forensic applications of environmental data. Part 1: Estimation of the usage of drugs in local communities. Environ. Pollut. 2009, 157, 1773–1777. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Illicit drugs and pharmaceuticals in the environment—Forensic applications of environmental data, Part 2: Pharmaceuticals as chemical markers of faecal water contamination. Environ. Pollut. 2009, 157, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Castrignano, E.; Lubben, A.; Kasprzyk-Hordern, B. Enantiomeric profiling of chiral drug biomarkers in wastewater with the usage of chiral liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2016, 1438, 84–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLeod, S.L.; Wong, C.S. Loadings, trends, comparisons, and fate of achiral and chiral pharmaceuticals in wastewaters from urban tertiary and rural aerated lagoon treatments. Water Res. 2010, 44, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Brienza, M.; Chiron, S. Enantioselective reductive transformation of climbazole: A concept towards quantitative biodegradation assessment in anaerobic biological treatment processes. Water Res. 2017, 116, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gomez, E.; Fenet, H.; Chiron, S. Chiral signature of venlafaxine as a marker of biological attenuation processes. Chemosphere 2013, 90, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Hühnerfuss, H.; Shah, M.R. Enantioselective chromatography-a powerful tool for the discrimination of biotic and abiotic transformation processes of chiral environmental pollutants. J. Chromatogr. A 2009, 1216, 481–502. [Google Scholar] [CrossRef] [PubMed]
- Niemi, L.M.; Stencel, K.A.; Murphy, M.J.; Schultz, M.M. Quantitative determination of antidepressants and their select degradates by liquid chromatography/electrospray ionization tandem mass spectrometry in biosolids destined for land application. Anal. Chem. 2013, 85, 7279–7286. [Google Scholar] [CrossRef] [PubMed]
- Hashim, N.H.; Khan, S.J. Enantioselective analysis of ibuprofen, ketoprofen and naproxen in wastewater and environmental water samples. J. Chromatogr. A 2011, 1218, 4746–4754. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Roig, P.; Kasprzyk-Hordern, B.; Blasco, C.; Pico, Y. Stereoisomeric profiling of drugs of abuse and pharmaceuticals in wastewaters of Valencia (Spain). Sci. Total Environ. 2014, 494–495, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasprzyk-Hordern, B.; Kondakal, V.V.; Baker, D.R. Enantiomeric analysis of drugs of abuse in wastewater by chiral liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 4575–4586. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, J.C.; Vanzolini, K.L.; Madureira, T.V.; Tiritan, M.E.; Cass, Q.B. A column-switching method for quantification of the enantiomers of omeprazole in native matrices of waste and estuarine water samples. Talanta 2010, 82, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Bagnall, J.P.; Evans, S.E.; Wort, M.T.; Lubben, A.T.; Kasprzyk-Hordern, B. Using chiral liquid chromatography quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level. J. Chromatogr. A 2012, 1249, 115–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLeod, S.L.; Sudhir, P.; Wong, C.S. Stereoisomer analysis of wastewater-derived beta-blockers, selective serotonin re-uptake inhibitors, and salbutamol by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2007, 1170, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Nikolai, L.N.; McClure, E.L.; Macleod, S.L.; Wong, C.S. Stereoisomer quantification of the beta-blocker drugs atenolol, metoprolol, and propranolol in wastewaters by chiral high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2006, 1131, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Morante-Zarcero, S.; Sierra, I. Simultaneous enantiomeric determination of propranolol, metoprolol, pindolol, and atenolol in natural waters by HPLC on new polysaccharide-based stationary phase using a highly selective molecularly imprinted polymer extraction. Chirality 2012, 24, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Fono, L.J.; Sedlak, D.L. Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters. Environ. Sci. Technol. 2005, 39, 9244–9252. [Google Scholar] [CrossRef] [PubMed]
- Morante-Zarcero, S.; Sierra, I. Comparative HPLC methods for beta-blockers separation using different types of chiral stationary phases in normal phase and polar organic phase elution modes. Analysis of propranolol enantiomers in natural waters. J. Pharm. Biomed. Anal. 2012, 62, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Barclay, V.K.; Tyrefors, N.L.; Johansson, I.M.; Pettersson, C.E. Chiral analysis of metoprolol and two of its metabolites, alpha-hydroxymetoprolol and deaminated metoprolol, in wastewater using liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2012, 1269, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Fono, L.J.; Kolodziej, E.P.; Sedlak, D.L. Attenuation of wastewater-derived contaminants in an effluent-dominated river. Environ. Sci. Technol. 2006, 40, 7257–7262. [Google Scholar] [CrossRef] [PubMed]
- Barclay, V.K.; Tyrefors, N.L.; Johansson, I.M.; Pettersson, C.E. Trace analysis of fluoxetine and its metabolite norfluoxetine. Part I: Development of a chiral liquid chromatography-tandem mass spectrometry method for wastewater samples. J. Chromatogr. A 2011, 1218, 5587–5596. [Google Scholar] [CrossRef] [PubMed]
- Barclay, V.K.; Tyrefors, N.L.; Johansson, I.M.; Pettersson, C.E. Trace analysis of fluoxetine and its metabolite norfluoxetine. Part II: Enantioselective quantification and studies of matrix effects in raw and treated wastewater by solid phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2012, 1227, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Munoz, D.; Kasprzyk-Hordern, B. Simultaneous enantiomeric analysis of pharmacologically active compounds in environmental samples by chiral LC-MS/MS with a macrocyclic antibiotic stationary phase. J. Mass Spectrom. 2017, 52, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Hashim, N.H.; Stuetz, R.M.; Khan, S.J. Enantiomeric fraction determination of 2-arylpropionic acids in a package plant membrane bioreactor. Chirality 2013, 25, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Munoz, D.; Kasprzyk-Hordern, B.; Thomas, K.V. Enantioselective simultaneous analysis of selected pharmaceuticals in environmental samples by ultrahigh performance supercritical fluid based chromatography tandem mass spectrometry. Anal. Chim. Acta 2016, 934, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.J.; Wang, L.; Hashim, N.H.; McDonald, J.A. Distinct enantiomeric signals of ibuprofen and naproxen in treated wastewater and sewer overflow. Chirality 2014, 26, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Caballo, C.; Sicilia, M.D.; Rubio, S. Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography-tandem mass spectrometry. Talanta 2015, 134, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhang, K.; Wang, Z.; Wang, C.; Peng, X. Enantiomeric determination of azole antifungals in wastewater and sludge by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 403, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wang, Z.; Wang, C.; Peng, X. Chiral profiling of azole antifungals in municipal wastewater and recipient rivers of the Pearl River Delta, China. Environ. Sci. Pollut. Res. Int. 2013, 20, 8890–8899. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, D.; Zhou, Z.; Wang, P. A new chiral residue analysis method for triazole fungicides in water using dispersive liquid-liquid microextraction (DLLME). Chirality 2013, 25, 567–574. [Google Scholar] [CrossRef] [PubMed]
Chiral Compounds | ||
---|---|---|
Stimulants and their metabolites | ||
Amphetamine (AM) | Metamphetamine (MA) | 3,4-Methylenedioxy-methamphetamine (MDMA) |
3,4-Methylenedioxy amphetamine (MDA) | Methylenedioxy-N-ethylamphetamine (MDEA) | p-Hydroxymethamphetamine (pOHMA) |
4-Hydroxy-3-methoxy methamphetamine (HMMA) | Methylphenidate (MPH) | Aminorex |
Drug precursors | ||
Pseudoephedrine | Ephedrine | |
Opioids, morphine derivatives and their metabolites | ||
Methadone | 2-Ethylidine-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) | Tramadol (T) |
O-Desmethyltramadol (ODT) | N-Desmethyltramadol (NDT) | N,O-Ddidesmethyltramadol (N,O-DDM-T) |
Antidepressants and their metabolites/Benzodiazepine | ||
Fluoxetine (FLX) | Norfluoxetine (NFLX) | Venlafaxine (VNF) |
O-Desmethylvenlafaxine (O-DES-VNF) | N-Desmethylvenlafaxine (N-DES-VNF) | N,O-Didesmethylvenlafaxine (N,O-DES-VNF) |
Citalopram | Reboxetine | D-citalopram |
Mirtazapine | Temazepam | |
Dissociative anaesthetic and its metabolite | ||
Ketamine | Norketamine | |
β-Blockers and anti-arrhythmic | ||
Metoprolol (MET) | Propranolol (PHO) | Bisoprolol (BSP) |
Carvedilol | Nadolol | Pindolol |
Verapamil | Norverapamil | Atenolol |
Alprenolol | Sotalol | |
Anticoagulants | ||
Warfarin (WFN) | ||
Non-steroidal anti-inflamatory drugs | ||
Ibuprofen | Carboxyibuprofen | 2-Hydroxyibuprofen |
Naproxen | Ketoprofen | Indoprofen |
Carprofen | Fenoprofen | Flurbiprofen |
Bronchodilators | ||
Salbutamol (SBT) | ||
Antibiotics | ||
Chloranfenicol | Ofloxacin | |
Antiepileptic and their metabolites | ||
10,11-Dihydro-10-hydroxycarbamazepine | ||
Proton pump inhibitors | ||
Omeprazol | Lanzoprazol | Rabeprazole |
Pantoprazole | ||
Antineoplastic agents and their metabolite | ||
Ifosfamide | 3-N-Dechloroethylifosfamide | |
Antifungals | ||
Econazole | Miconazole | Tebuconazole |
Ketoconazole | Hexaconazole | Penconazole |
Triadimefon | Imazalil | |
Anti-helminthic | ||
Praziquantel | Tetramisole | Phenyltetrahydroimidazo thiazole (PTHIT, levamisole/dexamisole) |
Antihistaminic | ||
Fexofenadine |
Drug | Matrix Application | Method | Stationary Phase | LOD | LOQ | Concentration Range/ER (When Mencioned) | Reference |
---|---|---|---|---|---|---|---|
AM | Plasma | GC/NICI-MS | SGE-BPX5 (15 m × 0.25 mm, 0.25 µm film thickness) | 50 fg | 0.049 ng/mL (R) 0.195 ng/mL (S) | 0.006–50 ng/mL | [30] |
HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 5 µg/L | 5–250 µg/L; ER (R/S): 0.97–1.66, with a mean value of 1.15 | [114] | |||
GC/EI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 5 ng/g plasma | 5–400 ng/g plasma | [31] | ||
Blood | GC/EI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 0.004 µg/g | 0.004–3 µg/g | [67] | |
GC/NICI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | 0.8 pg/mg (R) 0.7 pg/mg (S) | 2.7 pg/mg (R) 2.4 pg/mg (S) | 0.003–60 ng/mg (R) 0.002–60 ng/mg (S) ER (R/S): 0.03–0.95 | [49] | ||
Hair | GC/EI-MS | HP5-MS (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 2.5 ng/sample | 2.5–100 ng/sample | [31] | |
5% phenyl-methylsilicone capillary column (17 m × 0.2 mm, 0.33 µm film thickness) | 0.1 ng/mg | 0.2 ng/mg | 0.2–20 ng/mg | [69] | |||
LC/MS/MS | n.r. | 20 pg/mg | 50 pg/mg | 50–20000 pg/mg | [7] | ||
HPLC/ESI-MS | Chiral DRUG (150 mm × 2 mm) | 0.05 ng/mg | n.r. | 0.2–40 ng/mg | [59] | ||
Urine | GC/EI-MS | DB-5MS (20 m × 0.18 mm × 0.18 mm) | 10 ng/mL | n.r. | 25–10000 ng/mL | [115] | |
HP-5MS (20 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 10 µg/L | 10–500 µg/L | [42] | |||
HP-5MS (30 m × 0.2 mm, 0.33 µm film thickness) | 40 ng/mL | 45 ng/mL | 45–1000 (l; d) 45–2000 (d,l) | [70] | |||
5% phenyl polysiloxane (15 m × 0.2 mm, 0.2 µm df) | n.r. | n.r. | 25–10000 ng/mL | [116] | |||
GC/MS | HP-5MS (20 m × 0.25 mm, 0.25 µm film thickness) | 1.1 ng/mL (R) 1.3 ng/mL (S) | 3.7 ng/mL (R) 4.3 ng/mL (S) | 5–500 µg/L | [117] | ||
DB-5 (10 m × 0.1 mm, 0.4 µm film thickness) | 0.5 ng/mL | n.r. | 20–1000 ng/mL | [8] | |||
CE/ESI-MS | Uncoated fused silica capillary (50 µm, 100 cm) | 0.02 µg/mL | n.r. | 0.05–10 µg/mL | [33] | ||
0.03 µg/mL | n.r. | 0.2–10 µg/mL (S) | [118] | ||||
CE | PVA chemically modified diol capillary column (40 cm × 50 µm) | n.r. | n.r. | n.r. | [36] | ||
LC/MS-MS | Lux AMP (150 × 3 mm, 5 µm) | n.r. | 0.05 mg/L | 0.05–25 mg/L | [16] | ||
Chirobiotic V2 (250 × 2.1 mm, 5 µm) | 0.02 mg/L | 0.05 mg/L | 0.05–50.00 mg/L | [60] | |||
HPLC-UV | Adsorbosphere HS, C18 (150 × 4.6 mm, 5µm); C18 precolumn (7.5 × 4.6 mm) | n.r. | n.r. | 0.1–100 mg/L | [119] | ||
MA | Plasma | GC/NICI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 5 µg/L | 5–250 µg/L ER (R/S): 1.02–1.63, with a mean value of 1.33 | [114] |
Blood | GC/EI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 0.004 µg/g | 0.004–3 µg/g | [67] | |
Hair | GC/NICI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | 2.1 pg/mg (R) 1.5 pg/mg (S) | 6.9 pg/mg (R) 5.0 pg/mg (S) | 0.007–60 ng/mg (R) 0.005–60 ng/mg (S) ER (R/S): 0.01–0.82 | [49] | |
GC/MS | 5% phenyl-methylsilicone capillary column (17 m × 0.2 mm i.d., 0.33 µm film thickness) | 0.1 ng/mg | 0.2 ng/mg | 0.2–20 ng/mg | [69] | ||
HPLC/ESI-MS | Chiral DRUG (150 mm × 2 mm) | 0.01 ng/mg | n.r. | 0.04–40 ng/mg | [59] | ||
Urine | GC/EI-MS | DB-5MS (20 m × 0.18 mm i.d. × 0.18 mm) | 10 ng/mL | n.r. | 25–10000 ng/mL | [115] | |
HP-5MS (30 m × 0.2 mm, 0.33 µm film thickness) | 40 ng/mL | 45 ng/mL | 45–1000 (l; d) 45–2000 (d,l) | [70] | |||
HP-5MS (20 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 10 µg/L | 10–500 µg/L | [42] | |||
5% phenyl polysiloxane (15 m × 0.25 mm, 0.2 µm df) | n.r. | n.r. | 25–10000 ng/mL | [116] | |||
GC/MS | HP-1 (12 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 10 ng/mL | 10–2000 ng/ mL | [120] | ||
HP-5MS (20 m × 0.25 mm, 0.25 µm film thickness) | 2.0 ng/mL (R) 1.6 ng/mL (S) | 6.8 ng/mL (R) 5.2 ng/mL (S) | 5–500 µg/L | [117] | |||
DB-5 (10 m × 0.1 mm, 0.4 µm film thickness) | 3 ng/mL | n.r. | 20–1000 ng/mL | [8] | |||
CE/ESI-MS | Uncoated fused silica capillary (50 µm, 100 cm) | 0.02 µg/mL | n.r. | 0.05–10 µg/mL | [33] | ||
0.03 µg/mL | n.r. | 0.2–10 µg/mL (S) | [118] | ||||
CE | PVA chemically modified diol capillary column (40 cm × 50 µm) | n.r. | n.r. | n.r. | [36] | ||
LC/MS/MS | Chirobiotic V2 (250 × 2.1 mm, 5 µm) | 0.02 mg/L | 0.05 mg/L | 0.05–50.00 mg/L | [60] | ||
HPLC-UV | Adsorbosphere HS, C18 (150 × 4.6 mm, 5µm); C18 precolumn (7.5 × 4.6 mm) | n.r. | n.r. | 0.1–100 mg/L | [119] | ||
MDMA | Plasma | HPLC-DAD | ODS-1 (150 mm × 4.6 mm) with precolumn (20 × 4.0 mm) | n.r. | 7 ng/mL | n.r. | [121] |
Blood | GC/EI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 0.004 µg/g | 0.004–3 µg/g | [67] | |
LC/MS/MS | Kinetex C18 column (100 × 2.1 mm, 2.6 μm film thickness) | n.r. | 0.0025 µg/L | 0.0025–1.25 µg/L (R, S) | [122] | ||
Hair | GC/NICI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | 1.7 pg/mg (R) 1.5 pg/mg (S) | 5.6 pg/mg (R) 5.1 pg/mg (S) | 0.006–60 ng/mg (R) 0.005–60 ng/mg (S) | [49] | |
GC/MS | 5% phenyl-methylsilicone capillary column (17 m × 0.2 mm, 0.33 µm film thickness) | 0.2 ng/mg | 0.5 ng/mg | 0.5–20 ng/mg | [69] | ||
Urine | GC/NICI-MS LC/HRMS | n.r. (chiral derivatization S-HFBPrCl) Chirex3012 (250 × 4.6 mm, 5 µm film thickness) | n.r. | n.r. | n.r. | [68] | |
GC/EI-MS | HP-5MS (20 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 10 µg/L | 10–500 µg/L | [42] | ||
5% phenyl polysiloxane (15 m × 0.25 mm, 0.2 µm df) | n.r. | n.r. | 25–10000 ng/mL | [116] | |||
GC/MS | HP-5MS (20 m × 0.25 mm, 0.25 µm film thickness) | 1.7 ng/mL | 5.7–5.8 ng/mL | 5–500 µg/L | [117] | ||
HPLC-DAD | ODS-1 (150 × 4.6 mm) with precolumn (20 × 4.0 mm) | n.r. | 7 ng/mL | n.r. | [121] | ||
MDA | Plasma | HPLC-DAD | ODS-1 (150 × 4.6 mm) with precolumn (20 × 4.0 mm) | n.r. | 5 ng/mL | n.r. | [121] |
Blood | LC/MS/MS | Kinetex C18 column (100 × 2.1 mm, 2.6 μm film thickness) | n.r. | 0.0025 µg/L | 0.0025–0.25 µg/L (R, S) | [122] | |
Hair | GC/NICI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | 1.6 pg/mg (R) 1.3 pg/mg (S) | 5.3 pg/mg (R) 4.3 pg/mg (S) | 0.005–60 ng/mg (R) 0.004–60 ng/mg (S) | [49] | |
GC/MS | 5% phenyl-methylsilicone capillary column (17 m × 0.2 mm, 0.33 µm film thickness) | 0.1 ng/mg | 0.2 ng/mg | 0.2–20 ng/mg | [69] | ||
Urine | GC/NICI-MS LC/HRMS | n.r. (chiral derivatization S-HFBPrCl) Chirex3012 (250 × 4.6 mm, 5 µm film thickness) | n.r. | n.r. | n.r. | [68] | |
GC/EI-MS | HP-5MS (20 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 2 µg/L | 2–100 µg/L | [42] | ||
5% phenyl polysiloxane (15 m × 0.25 mm, 0.2 µm df) | n.r. | n.r. | 25–10000 ng/mL | [116] | |||
HPLC-DAD | ODS-1 (150 × 4.6 mm) with precolumn (20 × 4.0 mm) | n.r. | 5 ng/mL | n.r. | [121] | ||
MDEA | Whole blood | GC/EI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | 0.004 µg/g | 0.004–3 µg/g | [67] |
Hair | GC/NICI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | 2.7 pg/mg (R) 2.3 pg/mg (S) | 8.9 pg/mg (R) 7.7 pg/mg (S) | 0.009–60 ng/mg (R) 0.008–60 ng/mg (S) | [49] | |
GC/MS | 5% phenyl-methylsilicone capillary column (17 m × 0.2 mm i.d., 0.33 µm film thickness) | 0.2 ng/mg | 0.5 ng/mg | 0.5–20 ng/mg | [69] | ||
Urine | GC/EI-MS | 5% phenyl polysiloxane (15 m × 0.25 mm, 0.2 µm df) | n.r. | n.r. | 25–5000 ng/mL | [116] | |
pOHMA | Blood | LC/MS/MS | Kinetex C18 column (100 × 2.1 mm, 2.6 μm film thickness) | n.r. | 0.0025 µg/L | 0.0025–0.25 µg/L (R, S) | [122] |
Urine | GC/NICI-MS LC/HRMS | n.r. (chiral derivatization S-HFBPrCl) Chirex3012 (250 × 4.6 mm, 5 µm film thickness) | n.r. | n.r. | n.r. | [68] | |
CE/ESI-MS | Uncoated fused silica capillary (50 µm, 100 cm) | 0.02 µg/mL | n.r. | 0.05–10 µg/mL | [33] | ||
0.05 µg/mL | n.r. | 0.2–10 µg/mL (S) | [118] | ||||
CE | PVA chemically modified diol capillary column (40 cm × 50 µm) | n.r. | n.r. | n.r. | [36] | ||
HMMA | Blood | LC/MS/MS | Kinetex C18 column (100 × 2.1 mm, 2.6 μm film thickness) | n.r. | 0.0025 µg/L | 0.0025–0.25 µg/L (R, S) | [122] |
Methadone | Plasma | LC/EI-MS/MS | Chiral-AGP (50 × 2.0 mm, 5 µm) | n.r. | 2.5 ng/mL | 0–500 ng/mL | [85] |
LC/MS | Chiral-AGP (100 × 4.0 mm, 5 µm); Chiral-AGP guard column (10 × 2.0 mm, 5 µm) | 0.02 ng/mL | 1 ng/mL | 1–300 ng/mL | [83] | ||
Blood | LC/ESI-MS/MS | Chiral-AGP (100 × 4.0 mm, 5 µm); Chiral-AGP guard column (10 × 2.0 mm, 5 µm) | n.r. | n.r. | n.r. | [12] | |
LC/MS | α-1-acid glycoprotein (100 × 4.0 mm, 5 µm) and a α-1-acid glycoprotein guard column (10 × 2.0 mm, 5 µm) | n.r. | 0.02 mg/L | 0.05–2.1 mg/L | [123] | ||
Blood Tissues | LC/MS/MS | Chiral-AGP column (150 × 3 mm, 5 µm) | 0.65 ng/L (R) 0.49 ng/L (S) | 2.40 ng/L (R) 1.82 ng/L (S) | 50–1000 ng/L | [82] | |
Urine | LC/EI-MS/MS | Chiral-AGP (50 × 2.0 mm, 5 µm) | n.r. | 2.5 ng/mL | 0–500 ng/mL
ER (R/S): 1.42–2.96 | [85] | |
Liver | LC/EI-MS/MS | Chiral-AGP (50 × 2.0 mm, 5 µm) | n.r. | 2.5 ng/mL | 0–500 ng/mL | [85] | |
EDDP | Plasma | LC/MS | Chiral-AGP (100 × 4.0 mm, 5 µm); Chiral-AGP guard column (10 × 2.0 mm, 5 µm) | 0.01 ng/mL | 0.1 ng/mL | 1–25 ng/mL | [83] |
LC/EI-MS/MS | Chiral-AGP (50 × 2.0 mm, 5 µm) | n.r. | 2.5 ng/mL | 0–500 ng/mL | [85] | ||
Blood | LC/ESI-MS/MS | Chiral-AGP (100 × 4.0 mm, 5 µm); Chiral-AGP guard column (10 × 2.0 mm, 5 µm) | n.r. | n.r. | n.r. | [12] | |
Blood Tissues | LC/MS/MS | Chiral-AGP column (150 × 3 mm, 5 µm) | 0.77 ng/L (R) 0.76 ng/L (S) | 2.82 ng/L (R) 2.79 ng/L (S) | 50–1000 ng/L | [82] | |
Urine | LC/EI-MS/MS | Chiral-AGP (50 × 2.0 mm, 5 µm) | n.r. | 2.5 ng/mL | 0–500 ng/mL
ER (R/S): 0.76–0.89 | [85] | |
Liver | LC/EI-MS/MS | Chiral-AGP (50 × 2.0 mm, 5 µm) | n.r. | 2.5 ng/mL | 0–500 ng/mL | [85] | |
T | Plasma | LC/ESI-MS/MS | Chiralpak AD (250 × 4.6 mm, 10 µm) | n.r. | 0.2 ng/mL (total)
0.5 ng/mL (unbound) | 0.2–600 ng/mL (total) 0.5–250 ng/mL (unbound) | [81] |
LC/APCI-MS/MS | Lux Cellulose-2 (150 × 4.6 mm, 3 µm); Lux Cellulose-2 guard column (4 × 3 mm) | 0.15 ng/mL | 1 ng/mL | 1–800 ng/mL | [75] | ||
Chiralpak AD (250 × 4.6 mm, 10 µm) | 1 ng/mL | 3 ng/mL | 25–1000 ng/mL | [34] | |||
HPLC-DAD | Chiralcel OD-R (250 × 4.6 mm, 10 µm); LiChrospher 60-RP-selected B (250 × 4 mm, 5 µm) | 0.18 ng/mL (+)
0.16 ng/mL (‒) | 1 ng/mL | 1–500 ng/mL | [124] | ||
HPLC-FD | Chiralpak AD (250 × 4.6 mm, 10 µm) | 1 nM | 5 nM | 0.01–1.55 µM | [125] | ||
Chiralpak AD (250 × 4.6 mm); LichroCART 4-4 LiChrospher 100 Diol (5 µm) precolumn | n.r. | 2.5 ng/mL | 2.5–250 ng/mL | [126] | |||
Chiral-AGP (150 × 4.0 mm, 5 µm); Chiral-AGP guard column (10 × 4.0 mm, 5 µm) | n.r. | 2 ng/mL | 2–200 ng/mL | [127] | |||
Urine | GC/EI-MS | Rt-βDEXcst (30m × 0.25 mm, 0.25 µm film thickness) | 0.01 µg/mL | 0.1 µg/mL | 0.1–20 µg/mL | [128] | |
HPLC-FD | Chiralpak AD (250 × 4.6 mm, 10 µm) | 2 nM | 25 nM | 0.1–3.0 µM | [125] | ||
ODT | Plasma | LC/ESI-MS/MS | Chiralpak AD (250 × 4.6 mm, 10 µm) | n.r. | 0.1 ng/mL (total)
0.25 ng/mL (unbound) | 0.1–300 ng/mL (total) 0.25–125 ng/mL (unbound) | [81] |
LC/APCI-MS/MS | Lux Cellulose-2 (150 × 4.6 mm, 3 µm); Lux Cellulose-2 guard column (4 × 3 mm) | 0.20 ng/mL (+)
0.30 ng/mL (‒) | 1 ng/mL | 1–400 ng/mL | [75] | ||
Chiralpak AD (250 × 4.6 mm, 10 µm) | 1.3 ng/mL | 4 ng/mL | 25–1000 ng/mL | [34] | |||
HPLC-DAD | Chiralcel OD-R (250 × 4.6 mm, 10 µm); LiChrospher 60-RP-selected B (250 × 4 mm, 5 µm) | 0.08 ng/mL (+)
0.06 ng/mL (‒) | 0.5 ng/mL | 0.5–100 ng/mL | [124] | ||
HPLC-FD | Chiralpak AD (250 × 4.6 mm, 10 µm) | 1 nM | 5 nM | 0.01–1.55 µM | [125] | ||
Chiralpak AD (250 × 4.6 mm); LichroCART 4-4 LiChrospher 100 Diol (5 µm) precolumn | n.r. | 2.5 ng/mL | 2.5–250 ng/mL | [126] | |||
Chiral-AGP (150 × 4.0 mm × 5 µm); Chiral-AGP guard column (10 × 4.0 mm × 5 µm) | n.r. | 2.5 ng/mL | 2.5–100 ng/mL | [127] | |||
Urine | GC/EI-MS | Rt-βDEXcst (30 m × 0.25 mm, 0.25 µm film thickness) | 0.03 µg/mL | 0.1 µg/mL | 0.1–20 µg/mL | [128] | |
HPLC-FD | Chiralpak AD (250 × 4.6 mm, 10 µm) | 2 nM | 25 nM | 0.1–3.0 µM | [125] | ||
NDT | Plasma | LC/ESI-MS/MS | Chiralpak AD (250 × 4.6 mm, 10 µm) | n.r. | 0.1 ng/mL (total)
0.25 ng/mL (unbound) | 0.1–300 ng/mL (total) 0.25–125 ng/mL (unbound) | [81] |
HPLC-DAD | Chiralcel OD-R (250 × 4.6 mm, 10 µm); LiChrospher 60-RP-selected B (250 × 4 mm, 5 µm) | 0.15 ng/mL (+)
0.16 ng/mL (‒) | 0.5 ng/mL | 0.5–250 ng/mL | [124] | ||
HPLC-FD | Chiral-AGP (150 × 4.0 mm, 5 µm); Chiral-AGP guard column (10 × 4.0 mm, 5 µm) | n.r. | 2.5 ng/mL | 2.5–75 ng/mL | [127] | ||
N,O-DDM-T | Plasma | HPLC-FD | Chiralpak AD (250 × 4.6 mm); LichroCART 4-4 LiChrospher 100 Diol (5 µm) precolumn | n.r. | 2.5 ng/mL | 2.5–250 ng/mL | [126] |
Citalopram | Plasma | LC/ESI-MS/MS | Chiralcel OD-R (250 × 4.6 mm × 10 µm); LiChrospher 100 RP-8 precolumn (4 × 4.0 mm × 5 µm) | n.r. | 0.1 ng/mL | 0.1–20 ng/mL | [129] |
FLX | Plasma | LC/APCI-MS/MS | Chirobiotic V (250 × 4.6 mm, 5 µm) | n.r. | 2 ng/mL | 2–1000 ng/mL | [93] |
K | Plasma | LC/MS | Chiral-AGP (100 × 4.0 mm, 5 µm); Chiral-AGP guard column (10 × 2.0 mm, 5 µm) | 0.25 ng/mL | 1 ng/mL | 1–125 ng/mL | [111] |
Hair | CE-UV-DAD | Uncoated fused-silica capillary (450 × 50 mm) | 0.08 ng/mg | 0.25 ng/mg | 0.5–8.0 ng/mg | [110] | |
NK | Plasma | LC/MS | Chiral-AGP (100 × 4.0 mm, 5 µm); Chiral-AGP guard column (10 × 2.0 mm, 5 µm) | 0.25 ng/mL | 1 ng/mL | 1–125 ng/mL | [111] |
Hair | CE-UV-DAD | Uncoated fused-silica capillary (450 × 50 mm) | 0.08 ng/mg | 0.25 ng/mg | 0.5–8.0 ng/mg | [110] | |
MPH | Plasma | GC/NICI-MS | BPX5 fused silica (15 m × 0.25 mm) | n.r. | 0.006 ng/mL | 0.006–12.5 ng/mL | [130] |
n.r. | 0.072 ng/mL | 0.072–18.25 ng/mL | [131] | ||||
Blood | LC/MS/MS | Chiral AGP (100 × 4.0 mm, 5 µm); guard column (10 × 2.0 mm, 5 µm) | n.r. | n.r. | 0.2–500 ng/g | [65] | |
Urine | GC/EI-MS | DB-5 (30 m × 0.32 mm, 0.25 µm film thickness) | n.r. | 10 ng/mL | 0–10000 ng/mL | [132] | |
Reboxetine | Serum | LC/MS | Chiral-AGP (2 × 100 mm, 5 µm) | <1 nmol/L | n.r. | 50–500 nmol/L ER (S/R): 0.22–0.88, with a mean value of 0.5 | [97] |
VNF | Plasma | LC/ESI-MS/MS | Chirobiotic V (250 × 2.1 mm, 5 µm) | n.r. | 0.5 nM | 1–1000 nM ER (S/R): 1.01–4.33 | [95] |
HPLC/ESI-MS | Chirobiotic V (250 × 4.6 mm, 5 µm) | 1 ng/mL | 5.2 ng/mL (R) 5 ng/mL (S) | 5–400 ng/mL | [133] | ||
Whole blood | LC/ESI-MS/MS | Chirobiotic V (250 × 2.1 mm, 5 µm) | n.r. | 0.5 nM | 10–4000 nM ER (S/R): 0.59–1.11 | [95] | |
OD-VNF | Plasma | LC/ESI-MS/MS | Chirobiotic V (250 × 2.1 mm, 5 µm) | n.r. | 0.5 nM | 1–1000 nM
ER (S/R): 0.70–12.3 | [95] |
HPLC/ESI-MS | Chirobiotic V (250 × 4.6 mm, 5 µm) | 1.5 ng/mL | 3.5 ng/mL (R) 4.3 ng/mL (S) | 4–280 ng/mL | [133] | ||
Whole blood | LC/ESI-MS/MS | Chirobiotic V (250 × 2.1 mm, 5 µm) | n.r. | 0.5 nM | 10–4000 nM ER (S/R): 0.59–1.11 | [95] | |
ND-VNF | Plasma | LC/ESI-MS/MS | Chirobiotic V (250 × 2.1 mm, 5 µm) | n.r. | 0.25 nM | 0.5–500 nM ER (S/R): 1.24–2.91 | [95] |
Whole blood | LC/ESI-MS/MS | Chirobiotic V (250 × 2.1 mm, 5 µm) | n.r. | 0.25 nM | 5–2000 nM ER (S/R): 0.46–1.53 | [95] | |
N,O-DD-VNF | Plasma | LC/ESI-MS/MS | Chirobiotic V (250 × 2.1 mm, 5 µm) | n.r. | 0.25 nM | 0.5–500 nM ER (S/R): 0.42–1.18 | [95] |
Whole blood | LC/ESI-MS/MS | Chirobiotic V (250 × 2.1 mm, 5 µm) | n.r. | 0.25 nM | 5–2000 nM ER (S/R): 0.90–1.99 | [95] | |
MET | Urine | GC/EI-MS | HP-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | 0.5 ng/mL | n.r. | 0.1–4 ng/mL ER (R/S): 0.83 | [100] |
PHO | Plasma | LC/APCI-MS | Chirobiotic V (250 × 4.6 mm, 5 µm); Chirobiotic V guard column (20 × 4.0 mm, 5 µm) | 0.03 ng/mL | 0.25 ng/mL | 0.25–200 ng/mL | [98] |
WFN | Plasma | SFC/APCI-MS/MS | Chiralpak AD (250 × 4.6 mm); Chiralpak AD-H guard column (10 × 4.0 mm) | n.r. | 13.6 ng/mL | 13.6–2500 ng/mL | [104] |
LC/ESI-MS/MS | Chirobiotic V (250 × 4.6 mm, 5 µm); Cyclobond I guard column (20 × 4.0 mm, 5 µm) | 1.5 ng/mL | 5 ng/mL | 5–1500 ng/mL ER (S/R): 0.47±0.14 | [105] | ||
MEKC/ESI-MS | Fused silica capillaries (120 cm, 375 µm o.d., 50 µm) | 0.1 µg/mL (instr. limit) | n.r. | 0.25–5 µg/mL ER (R/S): 2.24–6.20 | [106] | ||
Carvedilol | Plasma | LC/ESI-MS/MS | Chirobiotic T (250 × 4.6 mm, 10 µm) | n.r. | 0.2 ng/mL | 0.2–500 ng/mL | [99] |
Ace 3 C18 (50 × 2.0 mm, 3 µm) | n.r. | 0.2 ng/mL | 0.2–200 ng/mL | [134] | |||
Verapamil | Plasma | CE-UV | Fused-silica capillaries | n.r. | n.r. | 2.5–250 ng/mL | [101] |
Norverapamil | Plasma | CE-UV | Fused-silica capillaries | n.r. | n.r. | 2.5–250 ng/mL | [101] |
SBT | Urine | NACE/ESI-MS | Fused silica capillaries (48.5 cm, 375 µm o.d., 50 µm) | 8–14 ng/mL | 18–20 ng/mL | 15–150 ng/mL | [135] |
PTHIT | Urine | GC-FID | Rt-β-DEXsm (30 m × 0.25 mm, 0.25 µm film thickness | n.r. | n.r. | n.r. | [10] |
Drugs | Matrix Application | Method | Stationary Phase | LOD/MDL | LOQ/MQL | Concentration Range/EF | Reference |
---|---|---|---|---|---|---|---|
AM MA MDMA MDA Ephedrine | Wastewater | UPLC/ESI-MS/MS | Chiral-CBH (100 × 2 mm, 5 µm); Chiral-CBH guard column (10 × 2 mm) | n.r. | AM: 5.1 ng/L | 0.5–1000 ng/L; EF: 0.52–0.84 (mean 0.64) | [17] |
MA: 0.6 ng/L | 0.05–1000 ng/L; EF ≥ 0.5 | ||||||
MDMA: 0.7 ng/L | 0.1–1000 ng/L; EF = 0.68 | ||||||
MDA: 4.2 ng/L | 0.1–1000 ng/L; EF > 0.5 | ||||||
Ephedrine: 5.6 ng/L | 0.5–1000 ng/L; EF: 0.81–0.96 (mean 0.91) | ||||||
AM, MA, MDMA, MDA, Ephedrine, Pseudoephedrine, Norephedrine, Atenolol, Alprenolol, PHO, MET, T, SBT, Sotalol, FLX, Mirtazapine, VNF, OD-VNF, Citalopram, D-citalopram | Influent wastewater (IW); effluent wastewater (EW); digested sludge (DS) | LC/ESI-MS/MS | Chiral-CBH (100 × 2 mm, 5 µm); Chiral-CBH guard column (10 × 2 mm) | AM (R/S): 0.38/0.39 ng/L (IW); 0.28/0.41 ng/L (EW); 4.92/5.15 ng/L (DS) | AM (R/S): 1.28/ 1.32 ng/L (IW); 0.94/1.36 ng/L (EW); 16.56/17.28 ng/L (DS) | 0.025–250 µg/L; EF: 0.5 (IW); 0.6 (EW); 0.3 (DS) | [62] |
MA (R/S): 0.12/0.13 ng/L (IW); 0.09/0.08 ng/L (EW); 0.73/0.77 ng/L (DS) | MA (R/S): 0.38/0.41 ng/L (IW); 0.28/0.27 ng/L (EW); 3.24/2.45 ng/L (DS) | 0.025–250 µg/L EF: 0.6 (IW); 0.5 (EW); 0.5 (DS) | |||||
MDMA: 0.05 ng/L (IW); 0.04 ng/L (EW); 1.43/1.79 ng/L (R/S) (DS) | MDMA (R/S): 0.17/0.18 ng/L (IW); 0.13/0.14 ng/L (EW); 4.75/5.96 ng/L (DS) | 0.025–250 µg/L EF: 0.7 (IW); 0.9 (EW); 0.4 (DS) | |||||
MDA (R/S): 0.33/0.36 ng/L (IW); 0.21/0.25 ng/L (EW); 2.21/4.14 ng/L (DS) | MDA (R/S): 1.13/1.19 ng/L (IW); 0.72/0.83 ng/L (EW); 7.46/13.74 ng/L (DS) | 0.025–250 µg/L EF: 0.6 (IW); 0.5 (EW); 0.3 (DS) | |||||
Ephedrine (1R,2S/ 1S,2R): 0.23/0.16 ng/L (IW); 0.14/0.07 ng/L (EW) | Ephedrine (1R,2S/1S,2R): 0.01/0.02 ng/L (IW); 0.48/0.25 ng/L (EW) | 0.025–250 µg/L EF: 0 (IW, EW) | |||||
Pseudoephedrine (1R,2R/1S,2S): 0.26/0.1 ng/L (IW); 0.15/0.11 ng/L (EW); 15.54/44.53 ng/L (DS) | Pseudoephedrine (1R,2R/1S,2S): 0.01/0.03 ng/L (IW); 0.52/0.36 ng/L (EW); 51.62/148.5 ng/L (DS) | 0.025–250 µg/L EF: 1 (IW); 0.2 (EW) | |||||
Norephedrine (E1/E2): 0.33/0.15 ng/L (IW); 0.19/0.21 ng/L (EW); 9.54/13.05 ng/L (DS) | Norephedrine (E1/E2): 0.01/0.02 ng/L (IW); 0.63/0.71 ng/L (EW); 31.52/43.38 ng/L (DS) | 0.025–250 µg/L EF: 0 (IW); 0.3 (EW); 0.1 (DS) | |||||
Chirobiotic V (250 × 2.1 mm, 5 µm) | Atenolol (R/S): 28.74/17.40 ng/L (IW); 30.80/32.73 ng/L (EW); 7.55/7.12 ng/L (DS) | Atenolol (R/S): 95.81/58 ng/L (IW); 102.68/109.08 ng/L (EW); 25.15/23.70 ng/L (DS) | 0.025–250 µg/L EF: 0.5 (IW, EW); 0.4 (DS) | ||||
Alprenolol (R/S): 0.14/0.07 ng/L (IW); 0.06/0.03 ng/L (EW); 0.14 ng/L (DS) | Alprenolol (R/S): 0.47/0.24 ng/L (IW); 0.21/0.09 ng/L (EW); 0.48/0.46 ng/L (DS) | 0.025–250 µg/L EF: 0.5 (IW, EW); 0.7 (DS) | |||||
PHO (R/S): 0.08/0.09 ng/L (IW); 0.06/0.05 ng/L (EW); 0.07/0.06 ng/L (DS) | PHO (R/S): 0.26/0.3 ng/L (IW); 0.20/0.17 ng/L (EW); 0.23/0.20 ng/L (DS) | 0.025–250 µg/L EF: 0.4 (IW, EW); 0.5 (DS) | |||||
MET (R/S): 0.08/0.06 ng/L (IW); 0.05/0.04 ng/L (EW); 0.05/0.07 ng/L (DS) | MET (R/S): 0.27/0.18 ng/L (IW); 0.15/0.12 ng/L (EW); 0.15/0.22 ng/L (DS) | 0.025–250 µg/L EF: 0.3 (IW, DS) | |||||
T (E1/E2): 0.09/0.43 ng/L (IW); 0.05/0.24 ng/L (EW); 0.05/0.34 ng/L (DS) | T (E1/E2): 0.29/1.43 ng/L (IW); 0.16/0.79 ng/L (EW); 0.18/1.13 ng/L (DS) | 0.025–250 µg/L EF: 0.7 (IW, EW, DS) | |||||
SBT (R/S): 2.22/2.20 ng/L (IW); 1.31/0.98 ng/L (EW); 80.03/65.03 ng/L (DS) | SBT (R/S): 7.41/7.32 ng/L (IW); 4.36/3.26 ng/L (EW); 265.10/225.10 ng/L (DS) | 0.025–250 µg/L EF: 0.5 (IW, EW) | |||||
Sotalol (E1/E2): 0.66/0.61 ng/L (IW); 0.53/0.46 ng/L (EW); 1.64/0.76 ng/L (DS) | Sotalol (E1/E2): 2.20/2.05 ng/L (IW); 1.76/1.53 ng/L (EW); 5.47/5.87 ng/L (DS) | 0.025–250 µg/L EF: 0.5 (IW, EW, DS) | |||||
FLX (R/S): 0.08/0.07 ng/L (IW); 0.05/0.04 ng/L (EW); 0.09/0.07 ng/L (DS) | FLX (R/S): 0.26/0.22 ng/L (IW); 0.17/0.14 ng/L (EW); 0.30/0.23 ng/L (DS) | 0.025–250 µg/L EF: 0.7 (IW, EW, DS) | |||||
Mirtazapine (R/S): 0.40/1.17 ng/L (IW); 0.40/0.86 ng/L (EW); 0.31/0.73 ng/L (DS) | Mirtazapine (R/S): 1.32/3.89 ng/L (IW); 1.32/2.86 ng/L (EW); 1.02/2.44 ng/L (DS) | 0.025–250 µg/L EF: 0.3 (IW); 0.2 (EW); 0.5 (DS) | |||||
VNF (R/S): 0.03/0.04 ng/L (IW); 0.02/0.03 ng/L (EW); 0.03 ng/L (DS) | VNF (R/S): 0.11/0.12 ng/L (IW); 0.07/0.11 ng/L (EW); 0.08 ng/L (DS) | 0.025–250 µg/L EF: 0.5 (IW, EW, DS) | |||||
OD-VNF (R/S): 0.32/0.16 ng/L (IW); 0.38/0.08 ng/L (EW); 0.75/1.02 ng/L (DS) | OD-VNF (R/S): 1.05/3.85 ng/L (IW); 1.28/2.30 ng/L (EW); 2.51/3.41 ng/L (DS) | 0.025–250 µg/L EF: 0.5 (IW, EW, DS) | |||||
Citalopram (R/S): 0.31/0.24 ng/L (IW); 0.27/0.21 ng/L (EW); 0.21/0.09 ng/L (DS) | Citalopram (R/S): 13.69/13.07 ng/L (IW); 11.78/11.15 ng/L (EW); 9.09/4.69 ng/L (DS) | 0.025–250 µg/L EF: 0.6 (IW, DS); 0.7 (EW) | |||||
D-Citalopram (R/S): 0.50/0.36 ng/L (IW); 0.40/0.29 ng/L (EW); 0.42/0.36 ng/L (DS) | D-Citalopram (R/S): 1.68/1.21 ng/L (IW); 1.34/0.96 ng/L (EW); 1.99/1.22 ng/L (DS) | 0.025–250 µg/L EF: 1 (IW); 0.6 (DS) | |||||
AM, MA, MDMA, MDA, MDEA, Norephedrine, VNF | WWTP influent (IW); WWTP effluent (EW) | UPLC/ESI-MS/MS | Chiral-CBH (100 × 2 mm, 5 µm); Chiral-CBH guard column (10 × 2 mm) | AM (R/S): 0.85/0. 9 ng/L (IW); 0.9/0.85 ng/L (EW) | AM (R/S): 4.35/4.4 ng/L (IW); 4.4/4.35 ng/L (EW) | 0.25–1900 ng/L EF n.r. | [149] |
MA: 0.85/0. 9 ng/L (R/S) (IW); 1 ng/L (EW) | MA: 2.8/2.95 ng/L (R/S) (IW); 3.35 ng/L (EW) | 0.25–1900 ng/L EF n.r. | |||||
MDMA: 0.9 ng/L (IW); 0.95/1 ng/L (E1/E2) (EW) | MDMA: 2.4 ng/L (IW); 2.55–2.65 ng/L (E1/E2) (EW) | 0.25–1900 ng/L EF: 0.53–0.72 (mean 0.63) (IW); 0.71 (EW) | |||||
MDA: 1.95/2 ng/L (E1/E2) (IW); 2 ng/L (EW) | MDA: 9.7 ng/L (IW); 10.1 ng/L (EW) | 0.25–1900 ng/L EF n.r. | |||||
MDEA: 0.55 ng/L (IW); 0.6 ng/L (EW) | MDEA: 2.25/2.2 ng/L (E1/E2) (IW); 2.4 ng/L (EW) | 0.25–1900 ng/L EF n.r. | |||||
Norephedrine (E1/E2): 3.5/3.3 ng/L (IW); 1.4/1.35 ng/L (EW) | Norephedrine (E1/E2): 11.75/10.9 ng/L (IW); 4.6/4.5 ng/L (EW) | 0.25–1900 ng/L EF n.r. | |||||
VNF: 1.6 ng/L (IW); 1.65 ng/L (EW) | VNF: 4.95/5.05 ng/L (E1/E2) (IW); 5.1 ng/L (EW) | 0.25–1900 ng/L EF: 0.45–0.50 (mean 0.48) (IW); 0.37–0.48 (mean 0.43) (EW) | |||||
AM, MA, MDMA, MDA, Ephedrine, Atenolol, VNF | WWTP influent (IW); WWTP effluent (EW); river water (RW) | LC/ESI-MS/MS | Chiral-CBH (100 × 2 mm, 5 µm); Chiral-CBH guard column (10 × 2 mm) | n.r. | n.r. | AM: 1–500 ng/L EF: 0.52–0.84 (mean 0.64) (IW); 0.57–1 (mean 0.78) (EW); 0.86 (RW before WWTP); 0.81 (RW after WWTP) | [9] |
MA: 1–500 ng/L EF: 0.22–0.53 (mean 0.34) (IW); 0.7–1 (mean 0.86) (EW) | |||||||
MDMA: 1–500 ng/L EF: 0.5–0.8 (mean 0.66) (IW); 0.64–0.91 (mean 0.75) (EW); 0.56–0.81 (mean 0.68) (RW before WWTP); 0.61–0.80 (mean 0.69) (RW after WWTP) | |||||||
MDA: 1–500 ng/L EF: 0.26–0.47 (mean 0.34) (IW); 0.38–0.58 (mean 0.45) (EW); 0.58 (RW before WWTP); 0.56–0.57 (RW after WWTP) | |||||||
Ephedrine: 1–500 ng/L EF: 0.81–1 (mean 0.99) (IW); 0.22–1 (mean 0.92) (EW); 0.79–1 (mean 0.97) (RW before WWTP); 0.80–1 (mean 0.99) (RW after WWTP) DF: 0.02–0.66 (mean 0.26) (IW); 0.04–0.82 (mean 0.36) (EW); 0–1 (mean 0.6) (RW before WWTP); 0–1 (mean 0.46) (RW after WWTP) | |||||||
VNF: 1–500 ng/L EF: 0.35–0.65 (mean 0.48) (IW); 0.46–0.69 (mean 0.52) (EW); 0.40–0.65 (mean 0.52) (RW before WWTP); 0.47–0.62 (mean 0.51) (RW after WWTP) | |||||||
Atenolol: 1.7 ng/L (IW, EW); 0.3 ng/L (RW) | 1–500 ng/L EF: 0.30–0.47 (mean 0.40) (IW); 0.40–0.61 (mean 0.46) (EW); 0.38–0.56 (mean 0.46) (RW before WWTP); 0.39–0.50 (mean 0.45) (RW after WWTP) | ||||||
AM, MA, MDMA, MDA, Atenolol, PHO, MET, FLX, VNF | Sewage effluent (SE); River water (RW) | LC/QTOF-MS | Chirobiotic V (250 × 4.6 mm, 5 µm); Chirobiotic V guard column (20 × 40 mm, 5 µm) | AM: 4.6/4.4 ng/L (R/S) (SE); 1.8 ng/L (RW) | AM (R/S): 12.4/11.5 ng/L (SE); 5.0/4.8 ng/L (RW) | 0.5–500 ng/L EF n.r. | [151] |
MA (R/S): 11.9/14.2 ng/L (SE); 4.6/5.5 ng/L (RW) | MA (R/S): 47.6/47.3 ng/L (SE); 18.5/18.3 ng/L (RW) | 0.25–500 ng/L EF n.r. | |||||
MDMA (E1/E2): 22.8/21.8 ng/L (SE); 9.6/10.4 ng/L (RW) | MDMA (E1/E2): 85.7/81.9 ng/L (SE); 35.8/39 ng/L (RW) | 5–500 ng/L EF n.r. | |||||
Atenolol (R/S): 5/5.3 ng/L (SE); 2.1/2.2 ng/L (RW) | Atenolol (R/S): 11.4/11 ng/L (SE); 4.8/4.7 ng/L (RW) | 0.25–100/5–500 ng/L (R); 0.5–100/5–500 ng/L (S) EF: 0.55 (SE); 0.47 (RW) | |||||
PHO (R/S): 1.4/1 ng/L (SE); 0.6/0.4 ng/L (RW) | PHO (R/S): 3.4/2.6 ng/L (SE); 1.4/1.2 ng/L (RW) | 0.25–100/5–500 ng/L EF: 0.43 (SE); 0.45 (RW) | |||||
MET: 0.6/0.7 ng/L (E1/E2) (SE); 0.2 ng/L (RW) | MET: 1.3 ng/L (SE); 0.3/0.4 ng/L (E1/E2) (RW) | 0.25–100/5–500 ng/L EF: 0.54 (SE) | |||||
FLX: 2.4/2.6 ng/L (R/S) (SE); 0.8 ng/L (RW) | FLX (R/S): 7.6/6.5 ng/L (SE); 2.5/2 ng/L (RW) | 0.25–100/5–500 ng/L EF n.r. | |||||
VNF (R/S): 4.8/3.9 ng/L (SE); 2.5/2.2 ng/L (RW) | VNF (R/S): 15.1/14.4 ng/L (SE); 7.9/8.1 ng/L (RW) | 0.5–100/5–500 ng/L EF: 0.43 (SE); 0.58 (RW) | |||||
Chiral-CBH (100 × 2 mm, 5 µm); Chiral-CBH guard column (10 × 2 mm, 5 µm) | AM (R/S): 4.8/5 ng/L (RW) | AM (R/S): 9.7/10 ng/L (RW) | 0.5–500 ng/L EF n.r. | ||||
MA (R/S): 4.1/3.6 ng/L (RW) | AM (R/S): 20.6/18.1 ng/L (RW) | 2.5–500 ng/L EF n.r. | |||||
MDMA (R/S): 10.7/10.2 ng/L (RW) | MDMA (R/S): 26.8/25.6 ng/L (RW) | 12.5–500 ng/L EF n.r. | |||||
MDA (R/S): 2.4/2.3 ng/L (RW) | MDA (R/S): 9.6/9.1 ng/L (RW) | 1.75–500 ng/L EF n.r. | |||||
Atenolol (R/S): 2.3/2.1 ng/L (RW) | Atenolol (R/S): 22.9/20.7 ng/L (RW) | 0.5–500 ng/L EF n.r. | |||||
VNF (E1/E2): 10.3/9.6 ng/L (RW) | VNF (E1/E2): 51.7/47.9 ng/L (RW) | 5–500 ng/L EF n.r. | |||||
Atenolol, PHO, MET, SBT, Sotalol, Nadolol, Pindolol, FLX, Citalopram | Influent wastewater (IW); Effluent wastewater (EW) | LC/ESI-MS/MS | Chirobiotic V (250 × 4.6 mm, 5 µm) with a nitrile guard cartridge (10 × 3 mm) | Atenolol: 1.8 ng/L (IW); 1.4 ng/L (EW) | 6 ng/L (IW); 5 ng/L (EW) | 1–500 ng/mL EF n.r. | [152] |
PHO: 0.5 ng/L (IW, EW) | 2 ng/L (IW, EW) | ||||||
MET: 2.3 ng/L (IW); 0.6 ng/L (EW) | 8 ng/L (IW); 2 ng/L (EW) | ||||||
SBT: 0.7 ng/L (IW); 0.6 ng/L (EW) | 2 ng/L (IW, EW) | ||||||
Sotalol: 7.5 ng/L (IW); 7.2 ng/L (EW) | 25 ng/L (IW); 24 ng/L (EW) | ||||||
Nadolol: 1.8 ng/L (IW); 1.7 ng/L (EW) | 12 ng/L (IW); 3 ng/L (EW) | ||||||
Pindolol: 0.4 ng/L (IW); 0.2 ng/L (EW) | 1 ng/L (IW, EW) | ||||||
FLX: 2.2 ng/L (IW); 0.6 ng/L (EW) | 7 ng/L (IW); 2 ng/L (EW) | ||||||
Citalopram: 2.4 ng/L (IW); 0.5 ng/L (EW) | 8 ng/L (IW); 2 ng/L (EW) | ||||||
Atenolol, PHO, MET | WWTP influent (IW); WWTP effluent (EW) | HPLC/ESI-MS/MS | Chirobiotic V (250 × 4.6 mm, 5 µm) with a nitrile guard cartridge (10 × 3 mm) and an in-line filter | Atenolol: 110 ng/L IW); 12 ng/L (EW) | n.r. | 25–1000 ng/mL EF 0.5 (IW; EW) | [153] |
PHO: 17 ng/L (IW); 4.4 ng/L (EW) | n.r. | 25–1000 ng/mL EF 0.5 (IW; EW) | |||||
MET: 42 ng/L (IW); 17 ng/L (EW) | n.r. | 25–1000 ng/mL EF: 0.5 (IW); ≠0.5 (EW) | |||||
Atenolol, MET, Sotalol, Citalopram, Temazepam | Effluent wastewater | LC/ESI-MS/MS | Chirobiotic V (250 × 4.6 mm, 5 µm) | n.r. | n.r. | Atenolol EF: 0.40–0.52 (mean 0.46) | [142] |
MET EF: 0.39–0.52 (mean 0.46) | |||||||
Sotalol EF: 0.34–0.41 (mean 0.36) | |||||||
Citalopram EF: 0.44–0.62 (mean 0.58) | |||||||
Chiralpak AD-RH (150 × 4.6 mm, 5 µm) | n.r. | n.r. | Temazepam EF: 0.39–0.49 (mean 0.47) | ||||
Atenolol, PHO, MET, Bisoprolol | River water | LC-UV | Lux Cellulose-1 (250 × 4.6 mm, 5 µm) | Atenolol: 22 µg/L | 70 µg/L | 12.5–100 µg/mL EF n.r. | [154] |
PHO: 3 µg/L | 10 µg/L | ||||||
MET: 20 µg/L | 40 µg/L | ||||||
Bisoprolol: 3 µg/L | 10 µg/L | ||||||
Alprenolol, PHO, MET, SBT, Bisoprolol, FLX, NFLX, VNF | WWTP effluent | LC/ESI-MS/MS | Chirobiotic V (150 × 2.1 mm, 5 µm) | Alprenolol (R/S): 8.08/4.52 ng/L | Alprenolol (R/S): 18.5/13.7 ng/L | 20–400 ng/L EF n.r. | [39] |
PHO (R/S): 1.97/0.65 ng/L | PHO (R/S): 5.96/1.98 ng/L | ||||||
MET (R/S): 11.5/3.37 ng/L | MET (R/S): 14.8/10.2 ng/L | ||||||
SBT (R/S): 5.07/6.29 ng/L | SBT (R/S): 15.4/19.1 ng/L | ||||||
Bisoprolol (E1/E2): 2.78/4.54 ng/L | Bisoprolol (E1/E2): 8.44/13.8 ng/L | ||||||
FLX (R/S): 8.41/3.74 ng/L | FLX (R/S):19.5/11.3 ng/L | ||||||
NFLX (R/S): 0.97/5.27 ng/L | NFLX (R/S): 2.95/16 ng/L | 30–400 ng/L EF n.r. | |||||
VNF (R/S): 9.82/1.71 ng/L | VNF (R/S): 19.7/5.18 ng/L | 20–400 ng/L EF: 0.54–0.55 (mean 0.55) | |||||
Alprenolol, PHO, MET, FLX, VNF, Ibuprofen, Naproxen, Flurbiprofen | Surface water | LC/ESI-MS/MS | Chirobiotic V (250 × 4.6 mm, 5 µm); Chirobiotic V guard column (20 × 4 mm, 5 µm) | Alprenolol (R/S): 0.2/0.1 ng/L | Alprenolol (R/S): 0.5/0.4 ng/L | 5–1000 µg/L EF n.r. | [37] |
PHO (R/S): 0.6/0.5 ng/L | PHO (R/S): 2.1/1.7 ng/L | 5–1000 µg/L EF: 0.44–0.56 (mean 0.49) | |||||
MET: 0.2 ng/L | MET (R/S): 0.6/0.5 ng/L | 5–1000 µg/L EF: 0.48–0.64 (mean 0.55) | |||||
FLX: 0.1 ng/L | 0.5 ng/L | 5–1000 µg/L; EF: 0.5–0.63 | |||||
VNF: 0.1 ng/L | 0.5 ng/L | 5–1000 µg/L; EF: 0.46–0.51 (mean 0.49) | |||||
Chiralpak AD-RH (150 × 4.6 mm, 5 µm) | Ibuprofen (R/S): 11/9.6 ng/L | Ibuprofen (R/S): 37/32 ng/L | 5–1000 µg/L EF n.r. | ||||
Naproxen: 0.4 ng/L | Naproxen (R/S): 1.4/1.2 ng/L | ||||||
Flurbiprofen (R/S): 3.3/2.4 ng/L | Flurbiprofen (R/S): 11/7.9 ng/L | ||||||
PHO | Influent wastewater (IW); Effluent wastewater (EW); Surface water (SW) | GC/ESI-MS/MS | MDN-5S (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | n.r. | EF: 0.5 (IW); ≤0.42 (EW); 0.42–0.53 (SW) | [155] |
PHO | River water | LC-UV | Lux-Cellulose 1 (250 × 4.6 mm, 5 µm) | 0.4 µg/L | 1.3 µg/L | 0.125–50 µg/mL; EF n.r. | [156] |
MET | Influent wastewater (IW); Effluent wastewater (EW) | LC/ESI-MS/MS | Chirobiotic V (250 × 4.6 mm, 5 µm) | 3.7/3.5 ng/L (IW); 1.9/1.5 ng/L (EW) (R/S) | 12.4/11.5 ng/L (IW); 6.5/5.1 ng/L (EW) (R/S) | EF: 0.48–0.52 (IW); 0.5–0.7 (EW) | [40] |
MET | Treated wastewater | LC/MS/MS | Chiral-CBH (100 × 2 mm, 5 µm); Chiral-CBH guard column and in-line high-pressure filter (4 mm, 0.5 µm) | 0.96/2.9 pM (E1/E2) | 5.8/11.6 pM (E1/E2) | EF: 0.51–0.55 | [157] |
MET | Effluent wastewater (EW); River water (RW) | GC/ESI-MS/MS | MDN-5S (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | n.r. | EF: 0.5 (EW); 0.31–0.44 (RW) | [158] |
FLX, NFLX | Raw wastewater (RaW); Treated wastewater (TW) | LC/ESI-MS/MS | Chiral-AGP (100 × 2 mm, 5 µm); in-line high-pressure filter with a replaceable cap frit (4 mm, 5 µm); Chiral-AGP guard column (10 × 2 mm) | FLX: 3 pM (RaW); 2/1 pM (R/S) (TW) | FLX: 12.4 pM (RaW); 3 pM (TW) | 0–500 pM EF: 0.71 (RaW, TW) | [159,160] |
NFLX: 2.4 pM (RaW); 2 pM (TW) | NFLX: 12.1/14.3 pM (E1/E2) (RaW); 4 pM (TW) | 0–500 pM EF: 0.69 (RaW); 0.68 (TW) | |||||
FLX, NFLX | WWTP effluent | HPLC-FD | Chirobiotic V (150 × 4.6 mm, 5 µm) | FLX: 0.8–2 ng/mL | 4 ng/mL | 4–60 ng/mL; EF n.r. | [137] |
NFLX: 0.8–2 ng/mL | 2 ng/mL | 2–30 ng/mL; EF n.r. | |||||
VNF | River water | LC/ESI-MS/MS | Chirobiotic V (250 × 2.1 mm, 5 µm); Chirobiotic guard column (10 × 2 mm) | 6/4 ng/L (R/S) | n.r. | EF: 0.46–0.74 | [144] |
Ibuprofen, Carboxyibuprofen, 2-Hydroxyibuprofen, Naproxen, Ketoprofen, Indoprofen, Chloramphenicol, Ifosfamide, Praziquantel | Influent wastewater (IW); Effluent wastewater (EW); Surface water (SW) | LC/ESI-MS/MS | Chirobiotic T (250 × 2.1 mm, 5 µm) | Ibuprofen (R/S): 1319/1111 ng/L (IW); 498/383 ng/L (EW); 263/114 ng/L (SW) | Ibuprofen (R/S): 5403/4551 ng/L (IW); 2039/1570 ng/L (EW); 1076/466 ng/L (SW) | 250–400 µg/L EF: 1 (IW) | [161] |
Carboxyibuprofen (E1/E2): 71/63.6 ng/L (IW); 71.4/58.6 ng/L (EW); 21.5/22.3 ng/L (SW) | Carboxyibuprofen (E1/E2): 232/208 ng/L (IW); 233/191 ng/L (EW); 70.2/72.7 ng/L (SW) | 32.7–300 µg/L (IW); 250–400 µg/L (EW, SW) EF: 0.83 (IW) | |||||
2-Hydroxyibuprofen (E1/E2): 31.7/20.4 ng/L (IW); 28/30.4 ng/L (EW); 10.9/10.4 ng/L (SW) | 2-Hydroxyibuprofen (E1/E2): 104/66.4 ng/L (IW); 91.3/99.3 ng/L (EW); 35.4/33.9 ng/L (SW) | 16.3–400 µg/L (E1); 16.3–300 µg/L (E2) EF: 0.76 (IW) | |||||
Naproxen (R/S): 11/7.53 ng/L (IW); 14.4/13.4 ng/L (EW); 7.5/6.83 ng/L (SW) | Naproxen (R/S): 38.1/26.1 ng/L (IW); 49.9/46.5 ng/L (EW); 25.9/23.7 ng/L (SW) | 8.66–50 µg/L EF: 1 (IW) | |||||
Ketoprofen (R/S): 2.08/2.61 ng/L (IW); 2.28/2.56 ng/L (EW); 1.60/1.32 ng/L (SW) | Ketoprofen (R/S): 6.85/8.59 ng/L (IW); 7.51/8.44 ng/L (EW); 5.29/4.37 ng/L (SW) | 1.65–400 µg/L EF n.r. | |||||
Indoprofen (E1/E2): 2.23/3.44 ng/L (IW); 2.20/2.59 ng/L (EW); 1.54/1.46 ng/L (SW) | Indoprofen (E1/E2): 7.59/11.7 ng/L (IW); 7.47/8.81 ng/L (EW); 5.24/4.95 ng/L (SW) | 1.70–100 µg/L EF n.r. | |||||
Chloramphenicol (1R,2R/1S,2S): 29.1/5.66 ng/L (IW); 26.1/4.84 ng/L (EW); 13.5/2.59 ng/L (SW) | Chloramphenicol (1R,2R/1S,2S): 98.9/18.8 ng/L (IW); 88.6/16.1 ng/L (EW); 45.8/8.61 ng/L (SW) | 17–400 µg/L (1R,2R); 3.33–800 µg/L (1S,2S) EF n.r. | |||||
Ifosfamide (E1/E2): 0.24/0.28 ng/L (IW); 0.23/0.22 ng/L (EW); 0.12/0.13 ng/L (SW) | Ifosfamide (E1/E2): 0.82/0.96 ng/L (IW); 0.78/0.74 ng/L (EW); 0.41/0.44 ng/L (SW) | 0.17–50 µg/L EF n.r. | |||||
Praziquantel (E1/E2): 3.02/3.11 ng/L (IW); 2.78/2.82 ng/L (EW); 1.34/1.39 ng/L (SW) | Praziquantel (E1/E2): 10.1/10.4 ng/L (IW); 9.26/9.40 ng/L (EW); 4.47/4.63 ng/L (SW) | 1.67–400 µg/L EF n.r. | |||||
Ibuprofen, Naproxen | Influent wastewater (IW); Effluent wastewater (EW) | GC/MS | Astec Chiraldex (20 m × 0.25 mm, 0.12 µm film thickness) | 0.1 µg/L | n.r. | Ibuprofen EF: 0.73–0.90 (IW); 0.60–0.76 (EW) | [44] |
Naproxen EF: 0.88–0.90 (IW); 0.71–0.86 (EW) | |||||||
Ibuprofen, Naproxen, Ketoprofen | Influent wastewater (IW); Effluent wastewater (EW) | GC/EI-MS/MS | HP5-MS (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | n.r. | Ibuprofen EF: 0.88–0.94 (IW); 0.38–0.40 (EW) | [162] |
Naproxen EF: 0.99 (IW); 0.86–0.94 (EW) | |||||||
Ketoprofen EF: 0.56–0.60 (IW); 0.54–0.68 (EW) | |||||||
Ibuprofen, 2-Hydroxyibuprofen, Naproxen, Indoprofen, Carprofen, Fenoprofen, Flurbiprofen, Chloramphenicol, Aminorex, Tetramisole, Omeprazole, Ifosfamide, 3-N-Dechloroethylifosfamide, Praziquantel, Imazalil, Ofloxacin | Influent wastewater (IW); Effluent wastewater (EW) | UHPSFC/ESI-MS/MS | Polysaccharide amylose tris-(3,5-dimethylphenylcarbamate) column | Ibuprofen (R/S): 1410/1525 ng/L (IW); 1458/1452 ng/L (EW) | Ibuprofen (R/S): 4695/5080 ng/L (IW); 4854/4837 ng/L (EW) | 415–2000 µg/L EF: 1 (IW) | [163] |
2-Hydroxyibuprofen (E1/E2): 409/415 ng/L (IW) | 2-Hydroxyibuprofen (E1/E2): 1360/1382 ng/L (IW) | 163.5–2000 µg/L EF: 0.2 (IW) | |||||
Naproxen: 233/267 ng/L (R/S) (IW); 539 ng/L (R) (EW) | Naproxen: 777/891 ng/L (R/S) (IW); 1796 ng/L (R) (EW) | 84.3–2000 µg/L EF: 1 (IW, EW) | |||||
Indoprofen (E1/E2): 2.38/2.68 ng/L (IW); 2.88/2.65 ng/L (EW) | Indoprofen (E1/E2): 7.91/8.91 ng/L (IW); 9.60/8.84 ng/L (EW) | 0.85–250 µg/L (E1); 0.85–500 µg/L (E2) EF n.r. | |||||
Carprofen (E1/E2): 378/287 ng/L (IW); 584/705 ng/L (EW) | Carprofen (E1/E2): 1259/956 ng/L (IW); 1945/2347 ng/L (EW) | 168–500 µg/L EF n.r. | |||||
Fenoprofen (E1/E2): 571/538 ng/L (IW); 499/489 ng/L (EW) | Fenoprofen (E1/E2): 1900/1793 ng/L (IW); 1660/1632 ng/L (EW) | 171–4000 µg/L EF n.r. | |||||
Flurbiprofen: 331 ng/L (IW); 252/378 ng/L (E1/E2) (EW) | Flurbiprofen (E1/E2): 838/1101 ng/L (IW); 838/1259 ng/L (EW) | 83.8–2000 µg/L EF n.r. | |||||
Chloramphenicol (1R,2R/1S,2S): 45.6/43.5 ng/L (IW); 53.4/50.1 ng/L (EW) | Chloramphenicol (1R,2R/1S,2S): 152/145 ng/L (IW); 178/167 ng/L (EW) | 16.9–500 µg/L (1R,2R); 16.7–500 µg/L (1S,2S) EF n.r. | |||||
Aminorex (E1/E2): 1.82/2.57 ng/L (IW); 2.16/3.02 ng/L (EW) | Aminorex (E1/E2): 6.05/8.56 ng/L (IW); 7.20/10 ng/L (EW) | 0.83–500 µg/L EF n.r. | |||||
Tetramisole (R/S): 2.54/2.94 ng/L (IW); 2.83/2.87 ng/L (EW) | Tetramisole (R/S): 8.46/9.79 ng/L (IW); 9.43/9.54 ng/L (EW) | 0.83–500 µg/L EF n.r. | |||||
Omeprazole: 24.5 ng/L (IW, EW) | 81.6 ng/L (IW, EW) | 0.82–125 µg/L (E1); 0.82–250 µg/L (E2) EF n.r. | |||||
Ifosfamide (E1/E2): 0.51/0.58 ng/L (IW); 0.51/0.54 ng/L (EW) | Ifosfamide (E1/E2): 1.70/1.93 ng/L (IW); 1.69/1.78 ng/L (EW) | 0.17–125 µg/L EF n.r. | |||||
3-N-Dechloroethyl-ifosfamide (E1/E2): 0.46/3.22 ng/L (IW); 1.35/8.62 ng/L (EW) | 3-N-Dechloroethyl-ifosfamide (E1/E2): 1.54/10.70 ng/L (IW); 4.50/28.70 ng/L (EW) | 0.17–50 µg/L (E1); 0.83–125 µg/L (E2) EF n.r. | |||||
Praziquantel (E1/E2): 2.66/2.47 ng/L (IW); 2.64/2.77 ng/L (EW) | Praziquantel (E1/E2): 8.86/8.23 ng/L (IW); 8.78/9.23 ng/L (EW) | 0.83–50 µg/L EF n.r. | |||||
Cellulose tris-(3-chloro-4-methylphenylcarbamate) column | Indoprofen (E1/E2): 5.53/3.94 ng/L (IW); 6.82/5.52 ng/L (EW) | Indoprofen (E1/E2): 18.4/13.1 ng/L (IW); 22.7/18.4 ng/L (EW) | 1.69–500 µg/L (E1); 1.69–250 µg/L (E2) EF n.r. | ||||
Aminorex (E1/E2): 2.32/2.54 ng/L (IW); 2.23/3.44 ng/L (EW) | Aminorex (E1/E2): 7.74/8.44 ng/L (IW); 7.59/11.70 ng/L (EW) | 0.83–500 µg/L EF: 0.4 (IW) | |||||
Tetramisole (R/S): 2.72/3.08 ng/L (IW); 3.16/2.60 ng/L (EW) | Tetramisole (R/S): 9.06/10.30 ng/L (IW); 10.50/8.65 ng/L (EW) | 0.83–250 µg/L (R); 0.83–500 µg/L (S) EF: 0.6 (IW, EW) | |||||
Omeprazole: 49 ng/L (IW, EW) | 163 ng/L (IW, EW) | 1.63–500 µg/L EF n.r. | |||||
3-N-Dechloroethyl-ifosfamide (E1/E2): 2.81/2.99 ng/L (IW); 7.69/8.68 ng/L (EW) | 3-N-Dechloroethyl-ifosfamide (E1/E2): 9.35/9.97 ng/L (IW); 25.60/28.90 ng/L (EW) | 0.83–125 µg/L EF: 0.4 (IW) | |||||
Praziquantel (E1/E2): 6.62/5.59 ng/L (IW); 6.80/5.30 ng/L (EW) | Praziquantel (E1/E2): 22/18.60 ng/L (IW); 22.60/17.60 ng/L (EW) | 1.67–500 µg/L (E1); 1.67–250 µg/L (E2) EF n.r. | |||||
Imazalil (E1/E2): 5.12/5.16 ng/L (IW); 7.09/6.45 ng/L (EW) | Imazalil (E1/E2): 17/17.20 ng/L (IW); 23.60/21.50 ng/L (EW) | 1.74–500 µg/L (E1); 1.74–250 µg/L (E2) EF: 0 (IW) | |||||
Ofloxacin (E1/E2): 98.20/63.10 ng/L (IW); 65.20/79 ng/L (EW) | Ofloxacin (E1/E2): 327/210 ng/L (IW); 218/263 ng/L (EW) | 16.4–500 µg/L (E1); 16.4–250 µg/L (E2) EF: 0 (IW) | |||||
Ibuprofen, Naproxen, Ketoprofen | Effluent wastewater | GC/EI-MS/MS | HP5-MS (30 m × 0.25 mm, 0.25 µm film thickness) | Ibuprofen: 0.7 ng/L (S) | n.r. | 0.08–300 ng/L; EF: 0.49–0.62 (mean 0.53) | [147] |
Naproxen: 0.7 ng/L (S) | n.r. | 0.08–300 ng/L; EF: 0.66–0.86 (mean 0.79) | |||||
Ketoprofen: 2.2 ng/L (S) | n.r. | 3–300 ng/L; EF: 0.54–0.66 (mean 0.60) | |||||
Ibuprofen, Naproxen | Influent wastewater (IW); Effluent wastewater (EW) | GC/EI-MS/MS | HP5-MS (30 m × 0.25 mm, 0.25 µm film thickness) | n.r. | n.r. | Ibuprofen EF: 0.6–0.8 (IW); 0.5 (EW) | [164] |
Naproxen EF: 1 (IW); 0.7–0.9 (EW) | |||||||
Ibuprofen, Naproxen, Ketoprofen | Influent wastewater (IW); Effluent wastewater (EW) | LC/MS/MS | Sumichiral OA-2500 (250 × 4.6 mm, 5 µm); Chirex 3005 guard column (30 × 4.6 mm, 5 µm) | Ibuprofen: 0.7 ng/L (IW); 0.5 ng/L (EW) | n.r. | 0.4–4000 µg/L EF: 0.79–0.86 (IW); 0.63–0.68 (EW) | [165] |
Naproxen: 1.2/1.1 ng/L (R/S) (IW); 1.1 ng/L (EW) | n.r. | 1.2–4000 µg/L EF: 0.98–0.99 (IW); 0.93–0.96 (EW) | |||||
Ketoprofen (R/S): 0.9/0.8 ng/L (IW); 0.8/0.7 ng/L (EW) | n.r. | 1–4000 µg/L EF: 0.54–0.68 (IW); 0.61–0.68 (EW) | |||||
Ibuprofen, Naproxen, Ketoprofen, Chloramphenicol, Aminorex, Tetramisole, Ifosfamide, 3-N-Dechloroethylifosfamide, Fexofenadine, 10,11-Dihydro-10-hydroxy-carbamazepine, Praziquantel | Effluent wastewater (EW); Surface water (SW) | LC/ESI-MS/MS | Chiral-AGP (100 × 2 mm, 5 µm); Chiral-AGP guard column (10 × 2 mm, 5 µm) | Ibuprofen (R/S): 16.45/23.15 ng/L (EW); 9.15/9.39 ng/L (SW) | Ibuprofen (R/S): 67.37/94.81 ng/L (EW); 37.47/38.46 ng/L (SW) | 41–492 µg/L EF: 0.65 (EW) | [32] |
Naproxen (R/S): 3.45/4.16 ng/L (EW); 2.45/3.39 ng/L (SW) | Naproxen (R/S): 11.96/14.39 ng/L (EW); 8.49/11.73 ng/L (SW) | 8.66–416 µg/L (R); 8.66–312 µg/L (S) EF: 0.92 (EW) | |||||
Ketoprofen: 0.52 ng/L (EW); 0.26/0.27 ng/L (R/S) (SW) | Ketoprofen (R/S): 1.73/1.70 ng/L (EW); 0.86/0.88 ng/L (SW) | 0.83–297 µg/L (R); 0.83–396 µg/L (S) EF n.r. | |||||
Chloramphenicol (1R,2R/1S,2S): 2.18/2.43 ng/L (EW); 1.02/1.19 ng/L (SW) | Chloramphenicol (1R,2R/1S,2S): 7.39/8.09 ng/L (EW); 3.46/3.96 ng/L (SW) | 3.40–612 µg/L (1R,2R); 3.33–400 µg/L (1S,2S) EF n.r. | |||||
Aminorex: 0.12 ng/L (EW); 0.06 ng/L (SW) | 0.39 ng/L (EW); 0.20 ng/L (SW) | 0.17–100 µg/L EF n.r. | |||||
Tetramisole (R/S): 1.04/0.93 ng/L (EW); 0.48/0.47 ng/L (SW) | Tetramisole (R/S): 3.42/3.08 ng/L (EW); 1.58/1.56 ng/L (SW) | 1.65–396 µg/L (R); 1.65–297 µg/L (S) EF: 0.50 (EW) | |||||
Ifosfamide: 0.09/0.08 ng/L (E1/E2) (EW); 0.04 ng/L (SW) | Ifosfamide (E1/E2): 0.31/0.29 ng/L (EW); 0.14/0.15 ng/L (SW) | 0.17–51 µg/L EF n.r. | |||||
3-N-Dechloroethy-lifosfamide (E1/E2): 3.33/2.94 ng/L (EW); 1.09 /1.14 ng/L (SW) | 3-N-Dechloroethy-lifosfamide (E1/E2): 11.10/9.79 ng/L (EW); 3.62/3.78 ng/L (SW) | 0.08–40 µg/L EF n.r. | |||||
Fexofenadine (E1/E2): 56.02/58.10 ng/L (EW); 33/34.66 ng/L (SW) | Fexofenadine (E1/E2): 190.29/197.33 ng/L (EW); 112.10/117.73 ng/L (SW) | 136–306 µg/L (E1); 136–408 µg/L (E2) EF: 0.55 (EW) | |||||
10,11-Dihydro-10-hydroxy-carbama-zepine (E1/E2): 1.08/1.06 ng/L (EW); 0.53/0.54 ng/L (SW) | 10,11-Dihydro-10-hydroxy-carbama-zepine (E1/E2): 3.58/3.53 ng/L (EW); 1.75/1.79 ng/L (SW) | 1.67–100 µg/L (E1); 1.67–300 µg/L (E2) EF n.r. | |||||
Praziquantel (E1/E2): 4.54/4.83 ng/L (EW); 2.52/2.21 ng/L (SW) | Praziquantel (E1/E2): 15.12/16.07 ng/L (EW); 8.38/7.37 ng/L (SW) | 8.33–400 µg/L (E1); 8.33–200 µg/L (E2) EF n.r. | |||||
Naproxen | Influent wastewater (IW); Effluent wastewater (EW); River water (RW) | LC/ESI-MS/MS | Chiralpak AD-RH (150 × 4.6 mm) | n.r. | n.r. | EF: 1 (IW); 0.88–0.91 (EW); 0.84–0.98 (RW) | [41] |
Omeprazole, Lansoprazole, Rabeprazole, Pantoprazole | Influent wastewater (IW); Effluent wastewater (EW); River water (RW) | LC/ESI-MS/MS | Chiralpak IC (250 × 4.6 mm, 5 µm) | Omeprazole: 2.03/2.29 ng/L (R/S) (IW); 0.74 ng/L (EW); 0.67/0.68 ng/L (R/S) (RW) | Omeprazole: 2.03/2.29 ng/L (R/S) (IW); 2.81 ng/L (EW); 2.55/2.59 ng/L (R/S) (RW) | 2–500 µg/L EF: 0.70 (IW); 0.53 (EW); 0.54 (RW) | [43] |
Lansoprazole: 0.96/1.02 ng/L (R/S) (IW); 0.69/0.70 ng/L (R/S) (EW); 0.67 ng/L (RW) | Lansoprazole (R/S): 4.34/4.63 ng/L (IW); 3.13/3.20 ng/L (EW); 3.05/3.06 ng/L (RW) | 2–500 µg/L EF: 0.51 (IW); 0.52 (EW, RW) | |||||
Rabeprazole: 0.94/0.95 ng/L (R/S) (IW); 0.71/0.73 ng/L (R/S) (EW); 0.78 ng/L (RW) | Rabeprazole (R/S): 3.37/3.40 ng/L (IW); 2.54/2.62 ng/L (EW); 2.81/2.78 ng/L (RW) | 2–500 µg/L EF: 0.52 (IW); 0.51 (RW) | |||||
Pantoprazole (E1/E2): 0.96/0.94 ng/L (IW); 0.93/1 ng/L (EW); 0.96/0.91 ng/L (RW) | Pantoprazole (E1/E2): 2.99/2.94 ng/L (IW); 2.90/3.12 ng/L (EW); 2.99/2.83 ng/L (RW) | 2–500 µg/L EF: 0.54 (IW); 0.51 (EW); 0.53 (RW) | |||||
Econazole, Miconazole, Tebuconazole, Ketoconazole | Raw wastewater (RaW); Treated wastewater (TW); Sludge (Sd) | LC/ESI-MS/MS | AGP column (100 × 4 mm, 5 µm); AGP guard column (10 × 4 mm) | n.r. | Econazole: 0.5 ng/L (RaW); 0.3 ng/L (TW); 3 ng/g (Sd) | 0.5–250 ng/mL EF: 0.50 (Sd) | [166] |
Miconazole: 0.5 ng/L (RaW); 0.3 ng/L (TW); 3 ng/g (Sd) | 0.5–250 ng/mL EF: 0.5 (RaW); 0.47 (TW); 0.5 (Sd) | ||||||
Tebuconazole: 0.8 ng/L/0.9 ng/L (E1/E2) (RaW); 0.3 ng/L (TW); 4/5 ng/g (E1/E2) (Sd) | 0.5–250 ng/mL EF n.r. | ||||||
HSA column (100 × 2 mm, 5 µm); HSA guard column (10 × 2 mm) | n.r. | Ketoconazole: 10 ng/L (RaW); 5 ng/L (TW); 29 ng/g (Sd) | 5–250 ng/mL EF: 0.48 (RaW, TW, Sd) | ||||
Econazole, Miconazole, Tebuconazole, Ketoconazole | River water (RW); Sludge (Sd) | LC/ESI-MS/MS | AGP column (100 × 4 mm, 5 µm); AGP guard column (10 × 4 mm) | n.r. | Econazole: 0.5 ng/L (RW); 3 ng/g (Sd) | 0.5–250 ng/mL (Sd) EF: 0.52 (RW); 0.50 (Sd) | [167] |
Miconazole: 0.6 ng/L (RW); 3ng/g (Sd) | 0.5–250 ng/mL (Sd) EF: 0.49–0.54 (RW); 0.50–0.52 (Sd) | ||||||
Tebuconazole: 0.6 ng/L (RW) | EF: 0.47–0.61 (RW) | ||||||
HSA column (100 × 2 mm, 5 µm); HSA guard column (10 × 2 mm) | n.r. | Ketoconazole: 7 ng/L (RW); 29 ng/g (Sd) | 5–250 ng/mL (Sd) EF: 0.48–0.49 (Sd) | ||||
Tebuconazole, Hexaconazole, Penconazole, Triadimefon | River water | LC/ESI-MS/MS | Chiralpak IC (250 × 4.6 mm, 5 µm) | Tebuconazole: 19.8 µg/L (‒); 25.4 µg/L (+) | 60 µg/L (‒); 76.2 µg/L (+) | 30–1500 µg/L EF n.r. | [168] |
Hexaconazole: 9.1 µg/L (‒); 8.6 µg/L (+) | 27.7 µg/L (‒); 25.8 µg/L (+) | ||||||
Penconazole: 29 µg/L (‒); 27.6 µg/L (+) | 88.1 µg/L (‒); 83.8 µg/L (+) | ||||||
Triadimefon: 8.5 µg/L | 25.5 µg/L |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, C.; Santos, C.; Gonçalves, V.; Ramos, A.; Afonso, C.; Tiritan, M.E. Chiral Drug Analysis in Forensic Chemistry: An Overview. Molecules 2018, 23, 262. https://doi.org/10.3390/molecules23020262
Ribeiro C, Santos C, Gonçalves V, Ramos A, Afonso C, Tiritan ME. Chiral Drug Analysis in Forensic Chemistry: An Overview. Molecules. 2018; 23(2):262. https://doi.org/10.3390/molecules23020262
Chicago/Turabian StyleRibeiro, Cláudia, Cristiana Santos, Valter Gonçalves, Ana Ramos, Carlos Afonso, and Maria Elizabeth Tiritan. 2018. "Chiral Drug Analysis in Forensic Chemistry: An Overview" Molecules 23, no. 2: 262. https://doi.org/10.3390/molecules23020262
APA StyleRibeiro, C., Santos, C., Gonçalves, V., Ramos, A., Afonso, C., & Tiritan, M. E. (2018). Chiral Drug Analysis in Forensic Chemistry: An Overview. Molecules, 23(2), 262. https://doi.org/10.3390/molecules23020262