Hydroxytyrosol and Oleuropein-Enriched Extracts Obtained from Olive Oil Wastes and By-Products as Active Antioxidant Ingredients for Poly (Vinyl Alcohol)-Based Films
<p>Chemical structure of hydroxytyrosol (HTyr) and oleuropein (Ole).</p> "> Figure 2
<p>(<b>a</b>) Chromatographic profile of hydroxytyrosol-enriched extract (HTyrE) at 280 nm. 1. HTyr; 2. Tyrosol. (<b>b</b>) Chromatographic profile of oleuropein-enriched extract (OleE) at 280 nm. 1. HTyr; 2. verbascoside; 3. oleuropein; 4. secoiridoid derivative.</p> "> Figure 3
<p><sup>1</sup>H-NMR spectrum of (<b>a</b>) HTyr; (<b>b</b>) HTyrE.</p> "> Figure 4
<p><sup>1</sup>H-NMR spectrum of (<b>a</b>) pure Ole; (<b>b</b>) Ole enriched extract (OleE).</p> "> Figure 5
<p>Visual aspect and field emission scanning electron microscopy (FESEM) images of (<b>a</b>) HTyrE and (<b>b</b>) OleE powder; (<b>c</b>,<b>d</b>) after dispersion in water.</p> "> Figure 6
<p>TG (residual mass) (<b>a</b>) and DTG (derivative weight loss) (<b>b</b>) curves for HTyrE and OleE.</p> "> Figure 7
<p>Panel A: FESEM images of fractured surfaces of poly (vinyl alcohol) (PVA), PVA/HTyrE and PVA/OleE films. Panel B: (<b>a</b>) Visual image and (<b>b</b>) UV-Vis analysis of PVA, PVA/HTyrE and PVA/OleE films.</p> "> Figure 8
<p>DTG curves (<b>a</b>,<b>b</b>) and first differential scanning calorimetry (DSC) heating scans (<b>c</b>,<b>d</b>) for neat PVA, PVA/HTyrE and PVA/OleE films.</p> "> Figure 9
<p>(<b>a</b>) Total phenolic content (TPC) and (<b>b</b>) antioxidant activity of PVA/HTyrE-5, PVA/HTyrE-10, PVA/HTyrE-20, PVA/OleE-5, PVA/OleE-10 and PVA/OleE-20 formulations determined by Folin–Ciocalteu method and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay respectively. Results are expressed as mg of gallic acid equivalent (GAE)/g of film for TPC and as radical scavenging activity (<span class="html-italic">RSA</span>%) for DPPH assay. Significant differences for <span class="html-italic">p</span> ≤ 0.05 were evidenced performing Tukey HSD test and are indicated with different letters.</p> "> Figure 10
<p>(<b>a</b>,<b>b</b>) HTyr and (<b>c</b>,<b>d</b>) Ole released (µg/mL) from each formulation (PVA/HTyrE-10, PVA/OleE-10 and PVA/HTyrE-5/OleE-5) into the simulant solution at different contact times. Analysis have been carried out in a food simulant (ethanol 10% <span class="html-italic">v</span>/<span class="html-italic">v</span>) for 21 days. Significant differences for <span class="html-italic">p</span> ≤ 0.05 were evidenced performing Tukey HSD test and are indicated with different letters.</p> "> Figure 11
<p>Radical scavenging activity (<span class="html-italic">RSA</span>%) of food simulant solutions after migration tests from PVA/HTyrE-10 (<b>a</b>), PVA/OleE-10 (<b>b</b>) and PVA/HTyrE-5/OleE-5 (<b>c</b>) formulations. Significant differences for <span class="html-italic">p</span> ≤ 0.05 were evidenced performing Tukey HSD test and are indicated with different letters.</p> "> Figure 12
<p>Procedure for the preparation of novel PVA formulations.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydroxytyrosol Enriched Extract (HTyrE) and Oleuropein Enriched Extract (OleE) Preparation and Characterization
2.2. Characterization of PVA-Based Films
2.2.1. Morphological, Transparency and Color Properties
2.2.2. Thermal and Mechanical Behavior
2.2.3. Total Phenolic Content (TPC) Analysis
2.2.4. Specific Migration, and Antioxidant Activity
3. Materials and Methods
3.1. Materials
3.2. Hydroxytyrosol-Enriched Extract (HTyrE) and Oleuropein-Enriched Extract (OleE) Preparation
3.3. HTyrE and OleE Characterization
3.3.1. High Performance Liquid Chromatography/Diode Array Detector (HPLC-DAD) Analysis
3.3.2. Nuclear Magnetic Resonance (NMR) Analysis
3.3.3. Morphological Characterization
3.3.4. Thermal Characterization
3.4. Preparation of PVA-Based Formulations
3.5. Characterization of PVA-Based Formulations
3.5.1. Morphological and Color Analysis
3.5.2. Thermal Characterization
3.5.3. Mechanical Characterization
3.5.4. Total Phenolic Content
3.5.5. DPPH Radical Scavenging Activity
3.5.6. Release Studies in Food Simulant
3.6. Statistics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Choe, E.; Min, D.B. Mechanisms of antioxidants in the oxidation of foods. Compr. Rev. Food Sci. Food Saf. 2009, 8, 345–358. [Google Scholar] [CrossRef]
- Pokorny, J.; Yanishlieva, N.; Gordon, M.H. Antioxidants in Food: Practical Applications; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Chen, Q.; Shi, H.; Ho, C.-T. Effects of rosemary extracts and major constituents on lipid oxidation and soybean lipoxygenase activity. J. Am. Oil Chem. Soc. 1992, 69, 999. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in antioxidant active food packaging. Trends Food Sci. Technol. 2014, 35, 42–51. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, S.J.; Choi, D.S.; Hur, S.J. Current topics in active and intelligent food packaging for preservation of fresh foods. J. Sci. Food Agric. 2015, 95, 2799–2810. [Google Scholar] [CrossRef]
- Lukic, I.; Vulic, J.; Ivanovic, J. Antioxidant activity of PLA/PCL films loaded with thymol and/or carvacrol using scCO2 for active food packaging. Food Packag. Shelf Life 2020, 26, 100578. [Google Scholar] [CrossRef]
- Luzi, F.; Torre, L.; Puglia, D. Antioxidant packaging films based on ethylene vinyl alcohol copolymer (EVOH) and caffeic acid. Molecules 2020, 25, 3953. [Google Scholar] [CrossRef]
- Pant, A.F.; Sängerlaub, S.; Müller, K. Gallic acid as an oxygen scavenger in bio-based multilayer packaging films. Materials 2017, 10, 489. [Google Scholar] [CrossRef] [PubMed]
- Luzi, F.; Pannucci, E.; Santi, L.; Kenny, J.M.; Torre, L.; Bernini, R.; Puglia, D. Gallic acid and quercetin as intelligent and active ingredients in poly (vinyl alcohol) films for food packaging. Polymers 2019, 11, 1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Lee, D.S.; Zhu, X.; Yam, K.L. Release kinetics of tocopherol and quercetin from binary antioxidant controlled-release packaging films. J. Agric. Food Chem. 2012, 60, 3492–3497. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, E.; Luzi, F.; Fanali, C.; Dugo, L.; Belluomo, M.G.; Torre, L.; Kenny, J.M.; Santi, L.; Bernini, R. Hydroxytyrosol as active ingredient in poly (vinyl alcohol) films for food packaging applications. J. Renew. Mater. 2016, 5, 81–95. [Google Scholar] [CrossRef]
- Luzi, F.; Fortunati, E.; Di Michele, A.; Pannucci, E.; Botticella, E.; Santi, L.; Kenny, J.M.; Torre, L.; Bernini, R. Nanostructured starch combined with hydroxytyrosol in poly(vinyl alcohol) based ternary films as active packaging system. Carbohydr. Polym. 2018, 193, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, S.B.; Vasile, C. Vegetable additives in food packaging polymeric materials. Polymers 2020, 12, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. Edible films prepared with different biopolymers, containing polyphenols extracted from elderberry (Sambucus Nigra L.), to protect food products and to improve food functionality. Food Bioprocess Technol. 2020, 13, 1742–1754. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Fraga-Corral, M.; Carpena, M.; García-Oliveira, P.; Echave, J.; Pereira, A.G.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food Funct. 2020, 11, 4853–4877. [Google Scholar] [CrossRef] [PubMed]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy–From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Difonzo, G.; Troilo, M.; Squeo, G.; Pasqualone, A.; Caponio, F. Functional compounds from olive pomace to obtain high-added value foods–a review. J. Sci. Food Agric. 2021, 101, 15–26. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.; Bonaccorsi, I.L.; Cacciola, F.; Dugo, L.; De Gara, L.; Dugo, P.; Mondello, L. Distribution of bioactives in entire mill chain from the drupe to the oil and wastes. Nat. Prod. Res. 2020, 1–6. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Nieto, G.; Pateiro, M.; Lorenzo, J.M. Phenolic compounds obtained from olea europaea by-products and their use to improve the quality and shelf life of meat and meat products—A review. Antioxidants 2020, 9, 1061. [Google Scholar] [CrossRef]
- Gambacorta, A.; Tofani, D.; Bernini, R.; Migliorini, A. High-yielding preparation of a stable precursor of hydroxytyrosol by total synthesis and from the natural glycoside oleuropein. J. Agric. Food Chem. 2007, 55, 3386–3391. [Google Scholar] [CrossRef] [PubMed]
- Babić, S.; Malev, O.; Pflieger, M.; Lebedev, A.T.; Mazur, D.M.; Kužić, A.; Čož-Rakovac, R.; Trebše, P. Toxicity evaluation of olive oil mill wastewater and its polar fraction using multiple whole-organism bioassays. Sci. Total Environ. 2019, 686, 903–914. [Google Scholar] [CrossRef]
- Apicella, A.; Adiletta, G.; Di Matteo, M.; Incarnato, L. Valorization of olive industry waste products for development of new eco-sustainable, multilayer antioxidant packaging for food preservation. Chem. Eng. Trans. 2019, 75, 85–90. [Google Scholar]
- Romani, A.; Pinelli, P.; Ieri, F.; Bernini, R. Sustainability, innovation, and green chemistry in the production and valorization of phenolic extracts from Olea europaea L. Sustainability 2016, 8, 1002. [Google Scholar] [CrossRef] [Green Version]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Fíla, V.; Denis, P.C.; Ruby-Figueroa, R. Current role of membrane technology: From the treatment of agro-industrial by-products up to the valorization of valuable compounds. Waste Biomass Valoriz. 2018, 9, 513–529. [Google Scholar] [CrossRef]
- Romani, A.; Campo, M.; Urciuoli, S.; Marrone, G.; Noce, A.; Bernini, R. An industrial and sustainable platform for the production of bioactive micronized powders and extracts enriched in polyphenols from Olea europaea L. and Vitis vinifera L. wastes. Front. Nutr. 2020, 7, 120. [Google Scholar] [CrossRef] [PubMed]
- Abdelghany, A.M.; Menazea, A.A.; Ismail, A.M. Synthesis, characterization and antimicrobial activity of Chitosan/Polyvinyl Alcohol blend doped with Hibiscus Sabdariffa L. extract. J. Mol. Struct. 2019, 1197, 603–609. [Google Scholar] [CrossRef]
- Kavoosi, G.; Nateghpoor, B.; Dadfar, S.M.M.; Dadfar, S.M.A. Antioxidant, antifungal, water binding, and mechanical properties of poly (vinyl alcohol) film incorporated with essential oil as a potential wound dressing material. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Heuschmid, F.F.; Schuster, P.; Lauer, B. Nonclinical toxicity of the grafted copolymer excipient PEG-PVA. Food Chem. Toxicol. 2013, 51, S1–S2. [Google Scholar] [CrossRef]
- Song, P.A.; Xu, Z.; Lu, Y.; Guo, Q. Bioinspired strategy for tuning thermal stability of PVA via hydrogen-bond crosslink. Compos. Sci. Technol. 2015, 118, 16–22. [Google Scholar] [CrossRef]
- Bernini, R.; Mincione, E.; Barontini, M.; Crisante, F. Convenient synthesis of hydroxytyrosol and its lipophilic derivatives from tyrosol or homovanillyl alcohol. J. Agric. Food Chem. 2008, 56, 8897–8904. [Google Scholar] [CrossRef]
- Nousis, L.; Doulias, P.-T.; Aligiannis, N.; Bazios, D.; Agalias, A.; Galaris, D.; Mitakou, S. DNA protecting and genotoxic effects of olive oil related components in cells exposed to hydrogen peroxide. Free Radic. Res. 2005, 39, 787–795. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Paini, M.; Adami, R.; Perego, P.; Reverchon, E. Use of supercritical assisted atomization to produce nanoparticles from olive pomace extract. Innov. Food Sci. Emerg. Technol. 2017, 40, 2–9. [Google Scholar] [CrossRef]
- Plaza, A.; Tapia, X.; Yañez, C.; Vilches, F.; Candia, O.; Cabezas, R.; Romero, J. Obtaining hydroxytyrosol from olive mill waste using deep eutectic solvents and then supercritical CO2. Waste Biomass Valoriz. 2019, 11, 6273–6284. [Google Scholar] [CrossRef]
- Baldino, L.; Della Porta, G.; Osseo, L.S.; Reverchon, E.; Adami, R. Concentrated oleuropein powder from olive leaves using alcoholic extraction and supercritical CO2 assisted extraction. J. Supercrit. Fluids 2018, 133, 65–69. [Google Scholar] [CrossRef]
- Santos, N.A.; Cordeiro, A.M.T.M.; Damasceno, S.S.; Aguiar, R.T.; Rosenhaim, R.; Carvalho Filho, J.R.; Santos, I.M.G.; Maia, A.S.; Souza, A.G. Commercial antioxidants and thermal stability evaluations. Fuel 2012, 97, 638–643. [Google Scholar] [CrossRef]
- Fortunati, E.; Luzi, F.; Dugo, L.; Fanali, C.; Tripodo, G.; Santi, L.; Kenny, J.M.; Torre, L.; Bernini, R. Effect of hydroxytyrosol methyl carbonate on the thermal, migration and antioxidant properties of PVA-based films for active food packaging. Polym. Int. 2016, 65, 872–882. [Google Scholar] [CrossRef]
- Tu, J.-L.; Yuan, J.-J. Thermal decomposition behavior of hydroxytyrosol (HT) in nitrogen atmosphere based on TG-FTIR methods. Molecules 2018, 23, 404. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, I.; Demir, M.; Bayraktar, O. Olive leaf extract as a crosslinking agent for the preparation of electrospun zein fibers. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef] [Green Version]
- Huguet-Casquero, A.; Moreno-Sastre, M.; López-Méndez, T.B.; Gainza, E.; Pedraz, J.L. Encapsulation of oleuropein in nanostructured lipid carriers: Biocompatibility and antioxidant efficacy in lung epithelial cells. Pharmaceutics 2020, 12, 429. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, K.; Shahedi, M. Physical, mechanical, and antimicrobial properties of ethylene vinyl alcohol copolymer/chitosan/nano-ZnO (ECNZn) nanocomposite films incorporating glycerol plasticizer. J. Food Meas. Charact. 2016, 10, 137–147. [Google Scholar] [CrossRef]
- Luzi, F.; Puglia, D.; Dominici, F.; Fortunati, E.; Giovanale, G.; Balestra, G.M.; Torre, L. Effect of gallic acid and umbelliferone on thermal, mechanical, antioxidant and antimicrobial properties of poly (vinyl alcohol-co-ethylene) films. Polym. Degrad. Stab. 2018, 152, 162–176. [Google Scholar] [CrossRef]
- Awada, H.; Daneault, C. Chemical modification of poly (vinyl alcohol) in water. Appl. Sci. 2015, 5, 840–850. [Google Scholar] [CrossRef]
- Olejnik, O.; Masek, A.; Kiersnowski, A. Thermal analysis of aliphatic polyester blends with natural antioxidants. Polymers 2020, 12, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, A.V.; Álvarez-Pérez, O.B.; Rojas, R.; Aguilar, C.N.; Garrigós, M.C. Impact of olive extract addition on corn starch-based active edible films properties for food packaging applications. Foods 2020, 9, 1339. [Google Scholar] [CrossRef] [PubMed]
- Hdidar, M.; Chouikhi, S.; Fattoum, A.; Arous, M. Effect of hydrolysis degree and mass molecular weight on the structure and properties of PVA films. Ionics 2017, 23, 3125–3135. [Google Scholar] [CrossRef]
- Erdohan, Z.Ö.; Çam, B.; Turhan, K.N. Characterization of antimicrobial polylactic acid based films. J. Food Eng. 2013, 119, 308–315. [Google Scholar] [CrossRef]
- Yudianti, R.; Karina, M. Development of nanocomposites from bacterial cellulose and poly (vinyl alcohol) using casting-drying method. Procedia Chem. 2012, 4, 73–79. [Google Scholar]
- Konidari, M.V.; Papadokostaki, K.G.; Sanopoulou, M. Moisture-induced effects on the tensile mechanical properties and glass-transition temperature of poly (vinyl alcohol) films. J. Appl. Polym. Sci. 2011, 120, 3381–3386. [Google Scholar] [CrossRef]
- Shi, R.; Bi, J.; Zhang, Z.; Zhu, A.; Chen, D.; Zhou, X.; Zhang, L.; Tian, W. The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr. Polym. 2008, 74, 763–770. [Google Scholar] [CrossRef]
- UNE-EN 13130-1:2005. Materials and articles in contact with foodstuffs. Plastics substances subject to limitation. In Guide to Test Methods for the Specific Migration of Substances from Plastics to Foods and Food Simulants and the Determination of Substances in Plastics and the Selection of Conditions of Exposure to Food Simulants; European Commission: Brussels, Belgium, 2005.
- European, C. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2011, 12, 1–89. [Google Scholar]
- Romani, A.; Scardigli, A.; Pinelli, P. An environmentally friendly process for the production of extracts rich in phenolic antioxidants from Olea europaea L. and Cynara scolymus L. matrices. Eur. Food Res. Technol. 2017, 243, 1229–1238. [Google Scholar] [CrossRef] [Green Version]
- Pinelli, P.; Galardi, C.; Mulinacci, N.; Vincieri, F.F.; Cimato, A.; Romani, A. Minor polar compound and fatty acid analyses in monocultivar virgin olive oils from Tuscany. Food Chem. 2003, 80, 331–336. [Google Scholar] [CrossRef]
- Cano, A.I.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food Eng. 2015, 167, 59–64. [Google Scholar] [CrossRef]
- Piñeros-Hernandez, D.; Medina-Jaramillo, C.; López-Córdoba, A.; Goyanes, S. Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll. 2017, 63, 488–495. [Google Scholar] [CrossRef]
Formulations | L* | a* | b* | ΔE* | Gloss (°) |
---|---|---|---|---|---|
Control | 99.47 ± 0.00 | −0.08 ± 0.01 | −0.08 ± 0.01 | - | 121 ± 0 |
PVA | 99.16 ± 0.04 | −0.10 ± 0.01 | 0.13 ± 0.02 | 0.37 ± 0.05 | 254 ± 4 |
PVA/HTyrE-5 | 97.39 ± 0.15 | −0.11 ± 0.03 | 3.71 ± 0.22 | 4.33 ± 0.25 | 228 ± 9 |
PVA/HTyrE-10 | 95.93 ± 0.02 | −0.08 ± 0.00 | 6.52 ± 0.11 | 7.49 ± 0.10 | 215 ± 2 |
PVA/HTyrE-20 | 94.45 ± 0.10 | −0.25 ± 0.03 | 9.17 ± 0.06 | 10.53 ± 0.10 | 171 ± 5 |
PVA/OleE-5 | 92.41 ± 0.58 | −2.98 ± 0.10 | 24.57 ± 1.23 | 25.81 ± 1.34 | 225 ± 3 |
PVA/OleE-10 | 87.62 ± 0.47 | −2.97 ± 0.61 | 32.73 ± 0.12 | 32.73 ± 0.12 | 185 ± 2 |
PVA/OleE-20 | 77.50 ± 0.68 | 3.97 ± 0.50 | 55.76 ± 0.13 | 60.14 ± 0.37 | 122 ± 9 |
PVA/HTyrE-5/Ole-5 | 92.70 ± 0.89 | −3.35 ± 0.12 | 23.59 ± 2.33 | 24.84 ± 2.46 | 222 ± 5 |
Formulations | σb (MPa) | εb (%) |
---|---|---|
PVA | 39 ± 4 | 101 ± 15 |
PVA/HTyrE-5 | 56 ± 7 | 140 ± 4 |
PVA/HTyrE-10 | 59 ± 1 | 105 ± 14 |
PVA/HTyrE-20 | 55 ± 8 | 75 ± 18 |
PVA/OleE-5 | 53 ± 9 | 166 ± 28 |
PVA/OleE-10 | 57 ± 5 | 163 ± 42 |
PVA/OleE-20 | 48 ± 3 | 23 ± 5 |
PVA/HTyrE-5/Ole-5 | 43 ± 4 | 152 ± 22 |
Formulations | PVA | HTyrE (%wt) | OleE (%wt) |
---|---|---|---|
PVA | 100 | - | - |
PVA/HTyrE-5 | 95 | 5 | - |
PVA/HTyrE-10 | 90 | 10 | - |
PVA/HTyrE-20 | 80 | 20 | - |
PVA/OleE-5 | 95 | - | 5 |
PVA/OleE-10 | 90 | - | 10 |
PVA/OleE-20 | 80 | - | 20 |
PVA/HTyrE-5/OleE-5 | 90 | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luzi, F.; Pannucci, E.; Clemente, M.; Grande, E.; Urciuoli, S.; Romani, A.; Torre, L.; Puglia, D.; Bernini, R.; Santi, L. Hydroxytyrosol and Oleuropein-Enriched Extracts Obtained from Olive Oil Wastes and By-Products as Active Antioxidant Ingredients for Poly (Vinyl Alcohol)-Based Films. Molecules 2021, 26, 2104. https://doi.org/10.3390/molecules26072104
Luzi F, Pannucci E, Clemente M, Grande E, Urciuoli S, Romani A, Torre L, Puglia D, Bernini R, Santi L. Hydroxytyrosol and Oleuropein-Enriched Extracts Obtained from Olive Oil Wastes and By-Products as Active Antioxidant Ingredients for Poly (Vinyl Alcohol)-Based Films. Molecules. 2021; 26(7):2104. https://doi.org/10.3390/molecules26072104
Chicago/Turabian StyleLuzi, Francesca, Elisa Pannucci, Mariangela Clemente, Edoardo Grande, Silvia Urciuoli, Annalisa Romani, Luigi Torre, Debora Puglia, Roberta Bernini, and Luca Santi. 2021. "Hydroxytyrosol and Oleuropein-Enriched Extracts Obtained from Olive Oil Wastes and By-Products as Active Antioxidant Ingredients for Poly (Vinyl Alcohol)-Based Films" Molecules 26, no. 7: 2104. https://doi.org/10.3390/molecules26072104
APA StyleLuzi, F., Pannucci, E., Clemente, M., Grande, E., Urciuoli, S., Romani, A., Torre, L., Puglia, D., Bernini, R., & Santi, L. (2021). Hydroxytyrosol and Oleuropein-Enriched Extracts Obtained from Olive Oil Wastes and By-Products as Active Antioxidant Ingredients for Poly (Vinyl Alcohol)-Based Films. Molecules, 26(7), 2104. https://doi.org/10.3390/molecules26072104