Phenolic Characterization, Antioxidant Activity, and Enzyme Inhibitory Properties of Berberis thunbergii DC. Leaves: A Valuable Source of Phenolic Acids
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC-MS Analysis of Methanolic and Aqueous Extracts
2.1.1. Phenolic Acids
2.1.2. Flavonoids
2.1.3. Other Compounds
2.2. Quantification of Phenolic Compounds in All Extracts
2.3. Total Phenolic and Flavonoid Contents
2.4. Biological Activities
3. Materials and Methods
3.1. Plant Material
3.2. Extraction
3.3. HPLC Analysis
3.4. Assays for Total Phenolic and Flavonoid Contents
3.5. Determination of Antioxidant and Enzyme Inhibitory Effects
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mokhber-Dezfuli, N.; Saeidnia, S.; Gohari, A.R.; Kurepaz-Mahmoodabadi, M. Phytochemistry and pharmacology of berberis species. Pharm. Rev. 2014, 8, 8–15. [Google Scholar]
- Bhardwaj, D.; Kaushik, N. Phytochemical and pharmacological studies in genus Berberis. Phytochem. Rev. 2012, 11, 523–542. [Google Scholar] [CrossRef]
- Hussain, N.; Adhikari, A.; Ahmad, M.S.; Wahab, A.-; Ali, M.; Choudhary, M.I. Two new prenylated flavonoids from the roots of Berberis thunbergii DC. Nat. Prod. Res. 2017, 31, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Bober, Z.; Stępień, A.; Aebisher, D.; Ożóg, Ł.; Bartusik-Aebisher, D. Fundamentals of the use of Berberis as a medicinal plant. Eur. J. Clin. Exp. Med. 2018, 16, 41–46. [Google Scholar] [CrossRef]
- Khan, I.; Najeebullah, S.; Ali, M.; Shinwari, Z.K. Phytopharmacological and ethnomedicinal uses of the Genus Berberis (Berberidaceae): A review. Trop. J. Pharm. Res. 2016, 15, 2047–2057. [Google Scholar] [CrossRef]
- Singh, M.; Srivastava, S.; Rawat, A. Antimicrobial activities of Indian Berberis species. Fitoterapia 2007, 78, 574–576. [Google Scholar] [CrossRef] [PubMed]
- Fatehi-Hassanabad, Z.; Jafarzadeh, M.; Tarhini, A.; Fatehi, M. The antihypertensive and vasodilator effects of aqueous extract from Berberis vulgaris fruit on hypertensive rats. Phyther. Res. 2005, 19, 222–225. [Google Scholar] [CrossRef]
- Pitta-Alvarez, S.I.; Medina-Bolivar, F.; Alvarez, M.A.; Scambatto, A.A.; Marconi, P.L. In vitro shoot culture and antimicrobial activity of Berberis buxifolia Lam. In Vitro Cell. Dev. Biol.-Plant 2008, 44, 502–507. [Google Scholar] [CrossRef]
- Siow, Y.L.; Sarna, L.; Karmin, O. Redox regulation in health and disease—Therapeutic potential of berberine. Food Res. Int. 2011, 44, 2409–2417. [Google Scholar] [CrossRef]
- Villinski, J.; Dumas, E.; Chai, H.-B.; Pezzuto, J.; Angerhofer, C.; Gafner, S. Antibacterial activity and alkaloid content of Berberis thunbergii, Berberis vulgaris and Hydrastis canadensis. Pharm. Biol. 2003, 41, 551–557. [Google Scholar] [CrossRef]
- Gudzinskas, Z.; Petrulaitis, L.; Zalneravicius, E. New woody alien plant species recorded in Lithuania. Bot. Lith. 2017, 23, 153–168. [Google Scholar] [CrossRef]
- Li, A.-R.; Zhu, Y.; Li, X.-N.; Tian, X.-J. Antimicrobial activity of four species of Berberidaceae. Fitoterapia 2007, 78, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Potdar, D.; Hirwani, R.R.; Dhulap, S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia 2012, 83, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-R.; Schutzki, R.E.; Nair, M.G. Antioxidant and anti-inflammatory compounds in the popular landscape plant Berberis thunbergii var. atropurpurea. Nat. Prod. Commun. 2013, 8, 165–168. [Google Scholar] [CrossRef]
- Och, A.; Szewczyk, K.; Pecio, Ł.; Stochmal, A.; Załuski, D.; Bogucka-Kocka, A. UPLC-MS/MS profile of alkaloids with cytotoxic properties of selected medicinal plants of the Berberidaceae and Papaveraceae families. Oxid. Med. Cell. Longev. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Ruiz, A.; Mardones, C.; Vergara, C.; Hermosín-Gutiérrez, I.; von Baer, D.; Hinrichsen, P.; Rodriguez, R.; Arribillaga, D.; Dominguez, E. Analysis of hydroxycinnamic acids derivatives in calafate (Berberis microphylla G. Forst) berries by liquid chromatography with photodiode array and mass spectrometry detection. J. Chromatogr. A 2013, 1281, 38–45. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Chamorro, M.F.; Reiner, G.; Theoduloz, C.; Ladio, A.; Schmeda-Hirschmann, G.; Gómez-Alonso, S.; Jiménez-Aspee, F. Polyphenol composition and (bio)activity of Berberis species and wild strawberries from the Argentinean Patagonia. Molecules 2019, 24, 3331. [Google Scholar] [CrossRef]
- Castillo-Fraire, C.M.; Poupard, P.; Guilois-Dubois, S.; Salas, E.; Guyot, S. Preparative fractionation of 5′-O-caffeoylquinic acid oxidation products using centrifugal partition chromatography and their investigation by mass spectrometry. J. Chromatogr. A 2019, 1592, 19–30. [Google Scholar] [CrossRef]
- Simirgiotis, M.J. Antioxidant capacity and HPLC-DAD-MS profiling of Chilean peumo (Cryptocarya alba) fruits and comparison with German peumo (Crataegus monogyna) from southern Chile. Molecules 2013, 18, 2061–2080. [Google Scholar] [CrossRef]
- Spínola, V.; Llorent-Martínez, E.J.; Gouveia-Figueira, S.; Castilho, P.C. Ulex europaeus: From noxious weed to source of valuable isoflavones and flavanones. Ind. Crop. Prod. 2016, 90, 9–27. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Spínola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crop. Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, Z.; Yao, S.; Li, S.; Yang, W.; Jiang, B.; Liu, X.; Wu, W.; Qv, H.; Guo, D. Neutral loss ion mapping experiment combined with precursor mass list and dynamic exclusion for screening unstable malonyl glucoside conjugates. J. Am. Soc. Mass Spectrom. 2016, 27, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Chandra Pradhan, P.; Saha, S. Anthocyanin profiling of Berberis lycium Royle berry and its bioactivity evaluation for its nutraceutical potential. J. Food Sci. Tecnhology 2016, 53, 1205–1213. [Google Scholar] [CrossRef]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; von Baer, D. Polyphenols and antioxidant activity of calafate (Berberis microphylla) fruits and other native berries from Southern Chile. J. Agric. Food Chem. 2010, 58, 6081–6089. [Google Scholar] [CrossRef]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Zhang, Y.; Zhang, X.; Zhang, Z.; Liao, Y.; Zhang, B. A new method for simultaneous determination of phenolic acids, alkaloids and limonoids in Phellodendri Amurensis Cortex. Molecules 2019, 24, 709. [Google Scholar] [CrossRef]
- Singh, A.; Bajpai, V.; Kumar, S.; Arya, K.R.; Sharma, K.R.; Kumar, B. Quantitative determination of isoquinoline alkaloids and chlorogenic acid in Berberis species using ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. J. Sep. Sci. 2015, 38, 2007–2013. [Google Scholar] [CrossRef]
- Gulsoy, S.; Ozkan, G.; Ozkan, K. Mineral elements, phenolics and organic acids of leaves and fruits from Berberis crataegina DC. Asian J. Chem. 2011, 23, 3071–3074. [Google Scholar]
- Shan, S.; Huang, X.; Shah, M.H.; Abbasi, A.M. Evaluation of polyphenolics content and antioxidant activity in edible wild fruits. Biomed. Res. Int. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Bustamante, L.; Pastene, E.; Duran-Sandoval, D.; Vergara, C.; Von Baer, D.; Mardones, C. Pharmacokinetics of low molecular weight phenolic compounds in gerbil plasma after the consumption of calafate berry (Berberis microphylla) extract. Food Chem. 2018, 268, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Lemoui, R.; Benyahia, S.; Noman, L.; Bencherchar, I.; Oke-Altuntas, F.; Rebbas, K.; Benayache, S.; Benayache, F.; Demirtas, I. Isolation of phytoconstituents and evaluation of biological potentials of Berberis hispanica from Algeria. Bangladesh J. Pharm. 2018, 13, 179–186. [Google Scholar] [CrossRef]
- Karimkhani, M.M.; Salarbashi, D.; Sanjari Sefidy, S.; Mohammadzadeh, A. Effect of extraction solvents on lipid peroxidation, antioxidant, antibacterial and antifungal activities of Berberis orthobotrys Bienerat ex C.K. Schneider. J. Food Meas. Charact. 2019, 13, 357–367. [Google Scholar] [CrossRef]
- Belwal, T.; Bhatt, I.D.; Rawal, R.S.; Pande, V. Microwave-assisted extraction (MAE) conditions using polynomial design for improving antioxidant phytochemicals in Berberis asiatica Roxb. ex DC. leaves. Ind. Crop. Prod. 2017, 95, 393–403. [Google Scholar] [CrossRef]
- Zovko Končic, M.; Kremer, D.; Karlovic, K.; Kosalec, I. Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food Chem. Toxicol. 2010, 48, 2176–2180. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Sentkowska, A.; Pyrzyńska, K.; De Peña, M.P. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: Influence of green coffee bean preparation. Eur. Food Res. Technol. 2016, 242, 1403–1409. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Ning, Z. Scavenging and antioxidant properties of compound derived from chlorogenic acid in South-China honeysuckle. Lwt-Food Sci. Technol. 2008, 41, 1189–1203. [Google Scholar] [CrossRef]
- Sevgi, K.; Tepe, B.; Sarikurkcu, C. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem. Toxicol. 2015, 77, 12–21. [Google Scholar] [CrossRef]
- Sabahi, Z.; Farmani, F.; Soltani, F.; Moein, M. DNA protection, antioxidant and xanthin oxidase inhibition activities of polyphenol-enriched fraction of Berberis integerrima Bunge fruits. Iran. J. Basic Med. Sci. 2018, 21, 411–416. [Google Scholar]
- IDF Diabetes Atlas Eigth Edition, International Diabetes Federation. Available online: https://www.idf.org/ (accessed on 24 April 2019).
- WHO, World Health Organization, Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 24 April 2019).
- Rauf, A.; Jehan, N. Natural products as a potential enzyme inhibitors from medicinal plants. In Enzyme Inhibitors and Activators; Senturk, M., Ed.; InTech: Londond, UK, 2017; pp. 165–177. [Google Scholar]
- Yuan, Y.; Zhang, J.; Fan, J.; Clark, J.; Shen, P.; Li, Y.; Zhang, C. Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Food Res. Int. 2018, 113, 288–297. [Google Scholar] [CrossRef]
- Oboh, G.; Agunloye, O.M.; Akinyemi, A.J.; Ademiluyi, A.O.; Adefegha, S.A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem. Res. 2013, 38, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Agunloye, O.M.; Adefegha, S.A.; Akinyemi, A.J.; Ademiluyi, A.O. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): A comparative study. J. Basic Clin. Physiol. Pharm. 2015, 26, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.; Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, Y.-X.; Yin, S.-J.; Oh, S.; Wang, Z.-J.; Ye, S.; Yan, L.; Yang, J.-M.; Park, Y.-D.; Lee, J.; Qian, G.-Y. An integrated study of tyrosinase inhibition by rutin: Progress using a computational simulation. J. Biomol. Struct. Dyn. 2012, 29, 999–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ademosun, A.O.; Oboh, G.; Bello, F.; Ayeni, P.O. Antioxidative properties and effect of quercetin and its glycosylated form (rutin) on acetylcholinesterase and butyrylcholinesterase activities. J. Evid. Based. Complementary Altern. Med. 2016, 21, NP11–NP17. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, A.I.; Alvarez-Parrilla, E.; Díaz-Sánchez, Á.G.; de la Rosa, L.A.; Núñez-Gastélum, J.A.; Vazquez-Flores, A.A.; Gonzalez-Aguilar, G.A. In vitro inhibition of pancreatic lipase by polyphenols: A kinetic, fluorescence spectroscopy and molecular docking study. Food Technol. Biotechnol. 2017, 55, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, Á.G.; de la Rosa, L.A.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Inhibition of α-amylase by flavonoids: Structure activity relationship (SAR). Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2019, 206, 437–447. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Zengin, G.; Lobine, D.; Molina-García, L.; Mollica, A.; Mahomoodally, M.F. Phytochemical characterization, in vitro and in silico approaches for three Hypericum species. New J. Chem. 2018, 42, 5204–5214. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharm. 2017, 8, 290. [Google Scholar] [CrossRef]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
No. | tR (min) | [M − H]− m/z | m/z (% Base Peak) | Assigned Identification | Berberis MeOH | Berberis Water |
---|---|---|---|---|---|---|
1 | 1.7 | 209 | MS2 [209]: 191 (100), 173 (2) | Glucaric acid | ✓ | |
2 | 2.0 | 371 | MS2 [371]: 353 (11), 209 (100), 191 (29) MS3 [371→209]: 191 (100), 173 (6) | Caffeoylglucaric acid isomer | ✓ | |
3 | 3.3 | 371 | MS2 [371]: 353 (8), 209 (100), 191 (35) MS3 [371→209]: 191 (100), 173 (3), 147 (7), 129 (2) | Caffeoylglucaric acid isomer | ✓ | ✓ |
4 | 4.1 | 371 | MS2 [371]: 353 (15), 209 (100), 191 (43) MS3 [371→209]: 191 (100), 173 (5), 147 (6), 129 (2) | Caffeoylglucaric acid isomer | ✓ | ✓ |
5 | 4.6 | 371 | MS2 [371]: 353 (8), 209 (100), 191 (21) MS3 [371→209]: 191 (100), 173 (13) | Caffeoylglucaric acid isomer | ✓ | ✓ |
6 | 5.7 | 371 | MS2 [371]: 353 (13), 209 (100), 191 (33) MS3 [371→209]: 191 (100), 173 (4) | Caffeoylglucaric acid isomer | ✓ | ✓ |
7 | 7.7 | 707 | MS2 [707]: 353 (100), 309 (5) MS3 [707→353]: 191 (100), 179 (16) | Caffeoylquinic acid | ✓ | ✓ |
8 | 8.0 | 707 | MS2 [707]: 353 (100) MS3 [707→353]: 335 (3), 191 (100) | Caffeoylquinic acid | ✓ | ✓ |
9 | 9.0 | 707 | MS2 [707]: 353 (100) MS3 [707→353]: 191 (100), 179 (3) | Chlorogenic acid* | ✓ | ✓ |
10 | 9.8 | 447 | MS2 [447]: 285 (100) MS3 [447→285]: 257 (100), 243 (70), 241 (88), 175 (61) | Luteolin-O-hexoside | ✓ | ✓ |
11 | 10.6 | 569 | MS2 [569]: 389 (8), 371 (100), 327 (8), 265 (12), 173 (8) MS3 [569→371]: 191 (36), 173 (97), 129 (100) | Quinic acid derivative | ✓ | ✓ |
12 | 11.2 | 707 | MS2 [707]: 353 (100) MS3 [707→353]: 191 (100), 179 (6), 173 (4) | Caffeoylquinic acid | ✓ | ✓ |
13 | 12.5 | 353 | MS2 [353]: 191 (100), 179 (14), 173 (4), 129 (3) MS3 [353→191]: 173 (79), 147 (30), 129 (60), 103 (100) | Caffeoylquinic acid | ✓ | ✓ |
14 | 12.6 | 449 | MS2 [449]: 287 (100), 269 (31), 259 (38) MS3 [449→287]: 259 (100), 243 (9), 125 (10) | Dihydrokaempferol-O-hexoside | ✓ | ✓ |
15 | 13.1 | 337 | MS2 [337]: 191 (100), 173 (3), 163 (5) MS3 [337→191]: 127 (100) | Coumaroylquinic acid isomer | ✓ | ✓ |
16 | 14.3 | 705 | MS2 [705]: 513 (100), 487 (4), 339 (7) MS3 [705→513]: 451 (3), 339 (100), 295 (4) MS4 [705→513→339]: 295 (100), 223 (18) | Caffeoylquinic acid dehydrodimer | ✓ | |
17 | 14.7 | 353 | MS2 [353]: 335 (100), 201 (30), 179 (26), 173 (70) MS3 [353→335]: 229 (51), 201 (34), 173 (100), 129 (80) MS4 [353→335→173]: 129 (100) | Caffeoylquinic acid | ✓ | ✓ |
18 | 15.2 | 337 | MS2 [337]: 191 (100), 173 (3), 163 (5) MS3 [337→191]: 127 (100) | Coumaroylquinic acid isomer | ✓ | ✓ |
19 | 16.7 | 367 | MS2 [367]: 191 (31), 179 (100), 135 (53) MS3 [367→179]: 135 (100) | Methyl-caffeoyl-quinate | ✓ | |
20 | 17.8 | 627 | MS2 [627]: 473 (11), 447 (100), 301 (7) MS3 [627→447]: 301 (100), 151 (7) MS4 [627→447→301]: 271 (63), 179 (80), 151 (100) | Quercetin derivative | ✓ | |
21 | 19.7 | 609 | MS2 [609]: 302 (15), 301 (100), 300 (10) MS3 [609→301]: 255 (30), 179 (100), 151 (60) MS4 [609→301→179]: 153 (31), 151 (100) | Rutin * | ✓ | ✓ |
22 | 20.5 | 463 | MS2 [463]: 301 (100) MS3 [463→301]: 255 (28), 179 (100), 151 (64) MS4 [463→301→179]: 151 (100), 107 (73) | Quercetin-O-hexoside | ✓ | ✓ |
23 | 21.0 | 463 | MS2 [463]: 301 (100) MS3 [463→301]: 255 (34), 179 (100), 151 (68) MS4 [463→301→179]: 151 (100), 107 (62) | Quercetin-O-hexoside | ✓ | ✓ |
24 | 21.5 | 367 | MS2 [367]: 335 (89), 179 (100), 161 (77), 135 (21) MS3 [367→179]: 135 (100) | Methyl-caffeoyl-quinate | ✓ | ✓ |
25 | 23.1 | 505 | MS2 [505]: 463 (13), 343 (3), 301 (100) MS3 [505→301]: 271 (36), 255 (42), 179 (80), 151 (100) | Quercetin-O-acetylhexoside | ✓ | ✓ |
26 | 23.1 | 551 (+) | MS2 [551]: 533 (3), 303 (100) MS3 [551→303]: 257 (100), 153 (55) | Delphinidin malonyl glucoside | ✓ | ✓ |
27 | 24.0 | 515 | MS2 [515]: 353 (100), 191 (6) MS3 [515→353]: 191 (100), 179 (38), 135 (11) | 3,5-Dicaffeoylquinic acid | ✓ | |
28 | 24.6 | 447 | MS2 [447]: 301 (100), 179 (3), 151 (3) MS3 [447→301]: 271 (23), 255 (17), 179 (54), 151 (100) MS4 [447→301→151]: 107 (100) | Quercetin-O-deoxyhexoside | ✓ | ✓ |
29 | 25.2 | 481 | MS2 [481]: 345 (6), 327 (100), 217 (11), 153 (21) MS3 [481→327]: 217 (100), 189 (8), 165 (6) MS4 [481→327→217]: 189 (100) | Unknown | ✓ | ✓ |
30 | 28.7 | 431 | MS2 [431]: 285 (100), 255 (7) MS3 [431→285]: 267 (85), 257 (55), 255 (100), 199 (49), 163 (65) | Kaempferol-O-deoxyhexoside | ✓ | ✓ |
31 | 30.0 | 613 | MS2 [613]: 503 (100), 451 (13), 393 (28), 379 (5), 341 (15) MS3 [613→503]: 341 (90), 393 (100), 379 (13) MS4 [613→503→393]: 284 (31), 269 (100), 229 (40) | Unknown | ✓ | ✓ |
32 | 33.8 | 336 (+) | MS2 [336]: 321 (100), 293 (11), 292 (26) MS3 [336→321]: 292 (100) | Berberine | ✓ | ✓ |
N°. | MeOH | Water | |
---|---|---|---|
Phenolic Acids | |||
2 | Caffeoylglucaric acid isomer | 38 ± 4 | - |
3 | Caffeoylglucaric acid isomer | 5.9 ± 0.1 b | 12.2 ± 0.3 a |
4 | Caffeoylglucaric acid isomer | 10.97 ± 0.7 b | 15 ± 1 a |
5 | Caffeoylglucaric acid isomer | 5.7 ± 0.3 b | 14.6 ± 0.7 a |
6 | Caffeoylglucaric acid isomer | 8.89 ± 0.01 b | 16.19 ± 0.03 a |
7 | Caffeoylquinic acid | 8.3 ± 0.3 b | 14.9 ± 0.5 a |
8 | Caffeoylquinic acid | 24 ± 1 b | 28 ± 2 a |
9 | Chlorogenic acid | 101.3 ± 0.4 a | 90.1 ± 0.3 b |
12 | Caffeoylquinic acid | 1.216 ± 0.009 b | 1.76 ± 0.01 a |
15 | Coumaroylquinic acid isomer | 0.94 ± 0.01 b | 1.43 ± 0.02 a |
16 | Caffeoylquinic acid dehydrodimer | - | 0.73 ± 0.03 |
17 | Caffeoylquinic acid | 4.4 ± 0.3 a | 3.6 ± 0.2 b |
18 | Coumaroylquinic acid isomer | 0.17 ± 0.02 b | 0.28 ± 0.05 a |
19 | Methyl-caffeoyl-quinate | 0.43 ± 0.03 | - |
24 | Methyl-caffeoyl-quinate | 0.21 ± 0.01 a | 0.16 ± 0.01 b |
Total | 210 ± 4 a | 199 ± 2 b | |
Flavonoids | |||
20 | Quercetin derivative | 0.36 ± 0.02 | - |
21 | Rutin | 6.0 ± 0.2 a | 4.2 ± 0.2 b |
22 | Quercetin-O-hexoside | 5.23 ± 0.06 a | 2.62 ± 0.04 b |
23 | Quercetin-O-hexoside | 7.92 ± 0.03 a | 4.04 ± 0.2 b |
25 | Quercetin-O-acetylhexoside | 0.57 ± 0.02 a | 0.30 ± 0.02 b |
28 | Quercetin-O-deoxyhexoside | 6.2 ± 0.2 a | 2.9 ± 0.1 b |
30 | Kaempferol-O-deoxyhexoside | 0.081 ± 0.001 a | 0.043 ± 0.001 b |
Total | 26.4 ± 0.3 a | 14.1 ± 0.3 b | |
TIPC | 236 ± 4 a | 213 ± 2 b |
Assays | MeOH | Water |
---|---|---|
Total bioactive components | ||
TPC (mg GAE/g) | 216 ± 6 a | 194 ± 1 b |
TFC (mg RE/g) | 46 ± 1 a | 20.6 ± 0.5 b |
Antioxidant assays | ||
DPPH (mg TE/g) | 429 ± 6 a | 360 ± 20 b |
ABTS (mg TE/g) | 450 ± 7 a | 352 ± 4 b |
CUPRAC (mg TE/g) | 1232 ± 5 a | 1120 ± 20 b |
FRAP (mg TE/g) | 620 ± 10 a | 549 ± 6 b |
Phosphomolybdenum (mmol TE/g) | 5.7 ± 0.3 a | 5.40 ± 0.05 a |
Metal Chelating (mg EDTAE/g) | 4.54 ± 0.01 a | 2.35 ± 0.01 b |
Enzyme inhibition assays | ||
AChE inhibition (mg GALAE/g) | 1.9 ± 0.2 a | 1.15 ± 0.01 b |
BChE inhibition (mg GALAE/g) | 0.19 ± 0.05 | ni |
Tyrosinase inhibition (mg KAE/g) | 33 ± 3 a | 29.8 ± 0.8 b |
Amylase inhibition (mmol ACAE/g) | 0.68 ± 0.01 a | 0.10 ± 0.01 b |
Glucosidase (mmol ACAE/g) | 2.54 ± 0.01 a | 2.22 ± 0.01 b |
Lipase (mg OE/g) | 54 ± 5 | ni |
DPPH | ABTS | CUPRAC | FRAP | PHOa | MCAb | AChE | BChE | Tyrosinase | Amylase | Glucosidase | Lipase | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TPC | 0.91 | 0.97 | 0.95 | 0.95 | 0.48 | 0.96 | 0.99 | 0.92 | 0.69 | 0.96 | 0.96 | 0.95 |
TFC | 0.96 | 0.99 | 0.98 | 0.98 | 0.66 | 0.99 | 0.95 | 0.98 | 0.81 | 0.99 | 0.99 | 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Poyatos, M.d.P.; Ruiz-Medina, A.; Zengin, G.; Llorent-Martínez, E.J. Phenolic Characterization, Antioxidant Activity, and Enzyme Inhibitory Properties of Berberis thunbergii DC. Leaves: A Valuable Source of Phenolic Acids. Molecules 2019, 24, 4171. https://doi.org/10.3390/molecules24224171
Fernández-Poyatos MdP, Ruiz-Medina A, Zengin G, Llorent-Martínez EJ. Phenolic Characterization, Antioxidant Activity, and Enzyme Inhibitory Properties of Berberis thunbergii DC. Leaves: A Valuable Source of Phenolic Acids. Molecules. 2019; 24(22):4171. https://doi.org/10.3390/molecules24224171
Chicago/Turabian StyleFernández-Poyatos, María del Pilar, Antonio Ruiz-Medina, Gokhan Zengin, and Eulogio J. Llorent-Martínez. 2019. "Phenolic Characterization, Antioxidant Activity, and Enzyme Inhibitory Properties of Berberis thunbergii DC. Leaves: A Valuable Source of Phenolic Acids" Molecules 24, no. 22: 4171. https://doi.org/10.3390/molecules24224171
APA StyleFernández-Poyatos, M. d. P., Ruiz-Medina, A., Zengin, G., & Llorent-Martínez, E. J. (2019). Phenolic Characterization, Antioxidant Activity, and Enzyme Inhibitory Properties of Berberis thunbergii DC. Leaves: A Valuable Source of Phenolic Acids. Molecules, 24(22), 4171. https://doi.org/10.3390/molecules24224171