Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen
<p>Exploratory behavior and short-term memory assessment in the T-maze task after acute exposure to sucrose, insecticide, and sucrose + insecticide: (<b>A</b>) time spent (s) in each of the three arms of the maze; (<b>B</b>) total number of entries in the arms of the maze; and (<b>C</b>) the effects on short-term memory assessed by the succession of arm entries after acute exposure to sucrose, insecticide, and sucrose + insecticide. Data are expressed as the average ± SD (<span class="html-italic">n</span> = 14, * <span class="html-italic">p</span> < 0.05 vs. control).</p> "> Figure 2
<p>Behavioral assessment in the light/dark preference test after acute exposure to sucrose, insecticide, and sucrose + insecticide: (<b>A</b>) latency time (s) until the first entry in the lit compartment; (<b>B</b>) time spent (s) in the lit compartment of the apparatus; (<b>C</b>) number of entries into the lit compartment; and (<b>D</b>) frequency of risk-appraisal behaviors, represented by the number of fast returns into the dark compartment and partial entries into the lit compartment. Data are expressed as the average± SD (<span class="html-italic">n</span> = 14, * <span class="html-italic">p</span> < 0.05 vs. control, ** <span class="html-italic">p</span> < 0.01 vs. control, # <span class="html-italic">p</span> < 0.05 vs. sucrose, and <span>$</span><span>$</span> <span class="html-italic">p</span> < 0.01 vs. insecticide).</p> "> Figure 3
<p>Assessment of aggressiveness level in the mirror-biting test after acute exposure to sucrose, insecticide, and sucrose + insecticide: (<b>A</b>) latency time (s); (<b>B</b>) number of entries into the mirror contact zone; (<b>C</b>) mirror contact duration (s); and (<b>D</b>) frequency of risk-appraisal behaviors, represented by the number of fast returns to the dark compartment and partial entries into the lit compartment. Data were expressed as the average± SD (<span class="html-italic">n</span> = 14, * <span class="html-italic">p</span> < 0.05 vs. control, # <span class="html-italic">p</span> < 0.05 vs. insecticide, ## <span class="html-italic">p</span> < 0.01 vs. insecticide, and &&& <span class="html-italic">p</span> < 0.001 vs. sucrose).</p> "> Figure 4
<p>The activity of superoxide dismutase (SOD) (<b>A</b>), catalase (CAT) (<b>B</b>), lipid peroxidation (MDA) (<b>C</b>), glutathione peroxidase (GPx) (<b>D</b>), acetylcholinesterase (ACHE) (<b>E</b>), and carbonylated proteins levels (<b>F</b>) in Silver crucian carp chronically exposed to the chemicals. Data are expressed as the mean ± SD (n = 5), analyzed by one-way ANOVA followed by Tukey’s post hoc test. Statistically significant differences are denoted by * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Behavioral Testing
2.4. Oxidative Stress Analysis
2.5. Chemicals
2.6. Statistical Analysis
3. Results
3.1. T-Maze Test—Evaluation of Spontaneous Exploratory Behavior and Short-Term Memory
3.2. Light/Dark Preference Test—Anxiety Assessment
3.3. Mirror-Biting Test
3.4. Oxidative Stress
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pisa, L.W.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Downs, C.A.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; Mcfield, M.; et al. Effects of Neonicotinoids and Fipronil on Non-Target Invertebrates. Environ. Sci. Pollut. Res. 2014, 22, 68–102. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G.; Wen, Z. Toxicity of Fipronil to Susceptible and Resistant Strains of German Cockroaches (Dictyoptera: Blattellidae) and House Flies (Diptera: Muscidae). J. Econ. Entomol. 1997, 90, 1152–1156. [Google Scholar] [CrossRef]
- Narahashi, T.; Zhao, X.; Ikeda, T.; Nagata, K.; Yeh, J.Z. Differential Actions of Insecticides on Target Sites: Basis for Selective Toxicity. Hum. Exp. Toxicol. 2007, 26, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Narahashi, T.; Zhao, X.; Ikeda, T.; Salgado, V.L.; Yeh, J.Z. Glutamate-Activated Chloride Channels: Unique Fipronil Targets Present in Insects but Not in Mammals. Pestic. Biochem. Physiol. 2010, 97, 149–152. [Google Scholar] [CrossRef]
- Beasley, V.R. Direct and Indirect Effects of Environmental Contaminants on Amphibians. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Vidau, C.; González-Polo, R.A.; Niso-Santano, M.; Gómez-Sánchez, R.; Bravo-San Pedro, J.M.; Pizarro-Estrella, E.; Blasco, R.; Brunet, J.L.; Belzunces, L.P.; Fuentes, J.M. Fipronil Is a Powerful Uncoupler of Oxidative Phosphorylation That Triggers Apoptosis in Human Neuronal Cell Line SHSY5Y. Neurotoxicology 2011, 32, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Santillán Deiú, A.; Ondarza, P.M.; Miglioranza, K.S.B.; de la Torre, F.R. Multibiomarker Responses and Bioaccumulation of Fipronil in Prochilodus Lineatus Exposed to Spiked Sediments: Oxidative Stress and Antioxidant Defenses. Pestic. Biochem. Physiol. 2021, 177, 104876. [Google Scholar] [CrossRef]
- Mossa, A.T.H.; Swelam, E.S.; Mohafrash, S.M.M. Sub-Chronic Exposure to Fipronil Induced Oxidative Stress, Biochemical and Histotopathological Changes in the Liver and Kidney of Male Albino Rats. Toxicol. Rep. 2015, 2, 775–784. [Google Scholar] [CrossRef]
- Pandit, A.A.; Gandham, R.K.; Mukhopadhyay, C.S.; Verma, R.; Sethi, R.S. Transcriptome Analysis Reveals the Role of the PCP Pathway in Fipronil and Endotoxin-Induced Lung Damage. Respir. Res. 2019, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Kartheek, R.M.; David, M. Assessment of Fipronil Toxicity on Wistar Rats: A Hepatotoxic Perspective. Toxicol. Rep. 2018, 5, 448–456. [Google Scholar] [CrossRef]
- Gasbarri, A.; Pompili, A. The Role of GABA in Memory Processes. In Identification of Neural Markers Accompanying Memory; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Makkar, S.R.; Zhang, S.Q.; Cranney, J. Behavioral and Neural Analysis of GABA in the Acquisition, Consolidation, Reconsolidation, and Extinction of Fear Memory. Neuropsychopharmacology 2010, 35, 1625–1652. [Google Scholar] [CrossRef] [PubMed]
- Godinho, A.F.; Chagas, A.C.S.; Carvalho, C.C.; Horta, D.F.; De Fraia, D.; Anselmo, F.; Chaguri, J.L.; Faria, C.A. Memory Impairment Due to Fipronil Pesticide Exposure Occurs at the GABAA Receptor Level, in Rats. Physiol. Behav. 2016, 165, 28–34. [Google Scholar] [CrossRef]
- Barbara, G.S.; Zube, C.; Rybak, J.; Gauthier, M.; Grünewald, B. Acetylcholine, GABA and Glutamate Induce Ionic Currents in Cultured Antennal Lobe Neurons of the Honeybee, Apis Mellifera. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2005, 191, 823–836. [Google Scholar] [CrossRef]
- Bharatiya, R.; Bratzu, J.; Lobina, C.; Corda, G.; Cocco, C.; De Deurwaerdere, P.; Argiolas, A.; Melis, M.R.; Sanna, F. The Pesticide Fipronil Injected into the Substantia Nigra of Male Rats Decreases Striatal Dopamine Content: A Neurochemical, Immunohistochemical and Behavioral Study. Behav. Brain Res. 2020, 384, 112562. [Google Scholar] [CrossRef] [PubMed]
- Koslowski, S.; Latapy, C.; Auvray, P.; Blondel, M.; Meijer, L. Long-Term Fipronil Treatment Induces Hyperactivity in Female Mice. Int. J. Environ. Res. Public Health 2020, 17, 1579. [Google Scholar] [CrossRef] [PubMed]
- Stylianopoulou, C. Carbohydrates: Chemistry and Classification. In Encyclopedia of Human Nutrition, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1–4. [Google Scholar]
- Gibson, S.; Gunn, P.; Wittekind, A.; Cottrell, R. The Effects of Sucrose on Metabolic Health: A Systematic Review of Human Intervention Studies in Healthy Adults. Crit. Rev. Food Sci. Nutr. 2013, 53, 591–614. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L. Sugar Consumption, Metabolic Disease and Obesity: The State of the Controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Fernández, S.; Garcés-Rimón, M.; Vera, G.; Astier, J.; Landrier, J.F.; Miguel, M. High Fat/High Glucose Diet Induces Metabolic Syndrome in an Experimental Rat Model. Nutrients 2018, 10, 1502. [Google Scholar] [CrossRef] [PubMed]
- Vial, G.; Chauvin, M.A.; Bendridi, N.; Durand, A.; Meugnier, E.; Madec, A.M.; Bernoud-Hubac, N.; De Barros, J.P.P.; Fontaine, É.; Acquaviva, C.; et al. Imeglimin Normalizes Glucose Tolerance and Insulin Sensitivity and Improves Mitochondrial Function in Liver of a High-Fat, High-Sucrose Diet Mice Model. Diabetes 2015, 64, 2254–2264. [Google Scholar] [CrossRef]
- Yang, Y.; Du, L.; Hosokawa, M.; Miyashita, K. Spirulina Lipids Alleviate Oxidative Stress and Inflammation in Mice Fed a High-Fat and High-Sucrose Diet. Mar. Drugs 2020, 18, 148. [Google Scholar] [CrossRef]
- Chen, G.C.; Huang, C.Y.; Chang, M.Y.; Chen, C.H.; Chen, S.W.; Huang, C.J.; Chao, P.M. Two Unhealthy Dietary Habits Featuring a High Fat Content and a Sucrose-Containing Beverage Intake, Alone or in Combination, on Inducing Metabolic Syndrome in Wistar Rats and C57BL/6J Mice. Metabolism 2011, 60, 155–164. [Google Scholar] [CrossRef]
- Aslam, M.; Madhu, S.V. Development of Metabolic Syndrome in High-Sucrose Diet Fed Rats Is Not Associated with Decrease in Adiponectin Levels. Endocrine 2017, 58, 59–65. [Google Scholar] [CrossRef]
- McCarthy, E.; Dunn, J.; Augustine, K.; Connaughton, V.P. Prolonged Hyperglycemia Causes Visual and Cognitive Deficits in Danio Rerio. Int. J. Mol. Sci. 2022, 23, 10167. [Google Scholar] [CrossRef]
- Faal, M.; Manouchehri, H.; Changizi, R.; Bootorabi, F.; Khorramizadeh, M.R. Assessment of Resveratrol on Diabetes of Zebrafish (Danio Rerio). J. Diabetes Metab. Disord. 2022, 21, 823–833. [Google Scholar] [CrossRef]
- Lakstygal, A.M.; de Abreu, M.S.; Lifanov, D.A.; Wappler-Guzzetta, E.A.; Serikuly, N.; Alpsyshov, E.T.; Wang, D.M.; Wang, M.Y.; Tang, Z.C.; Yan, D.N.; et al. Zebrafish Models of Diabetes-Related CNS Pathogenesis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 92, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Profenno, L.A.; Porsteinsson, A.P.; Faraone, S.V. Meta-Analysis of Alzheimer’s Disease Risk with Obesity, Diabetes, and Related Disorders. Biol. Psychiatry 2010, 67, 505–512. [Google Scholar] [CrossRef]
- Haan, M.N. Therapy Insight: Type 2 Diabetes Mellitus and the Risk of Late-Onset Alzheimer’s Disease. Nat. Clin. Pract. Neurol. 2006, 2, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Hu, Y.; Wang, B.; Wang, S.; Zhang, X. Metabolic Dysregulation Contributes to the Progression of Alzheimer’s Disease. Front. Neurosci. 2020, 14, 530219. [Google Scholar] [CrossRef]
- Liu, L.; Volpe, S.L.; Ross, J.A.; Grimm, J.A.; Van Bockstaele, E.J.; Eisen, H.J. Dietary Sugar Intake and Risk of Alzheimer’s Disease in Older Women. Nutr. Neurosci. 2022, 25, 2302–2313. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ta, Q.T.H.; Nguyen, T.K.O.; Nguyen, T.T.D.; Giau, V. Van Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 3165. [Google Scholar] [CrossRef] [PubMed]
- Arab, A.; Mostafalou, S. Pesticides and Insulin Resistance-Related Metabolic Diseases: Evidences and Mechanisms. Pestic. Biochem. Physiol. 2023, 195, 105521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ma, Y.; Luo, Y.; Song, Y.; Xiong, G.; Ma, Y.; Sun, X.; Kan, C. Metabolic Diseases and Healthy Aging: Identifying Environmental and Behavioral Risk Factors and Promoting Public Health. Front. Public Health 2023, 11, 1253506. [Google Scholar] [CrossRef] [PubMed]
- Khalil, W.J.; Akeblersane, M.; Khan, A.S.; Moin, A.S.M.; Butler, A.E. Environmental Pollution and the Risk of Developing Metabolic Disorders: Obesity and Diabetes. Int. J. Mol. Sci. 2023, 24, 8870. [Google Scholar] [CrossRef] [PubMed]
- De Long, N.E.; Holloway, A.C. Early-Life Chemical Exposures and Risk of Metabolic Syndrome. Diabetes Metab. Syndr. Obes. 2017, 10, 101–109. [Google Scholar] [CrossRef]
- Machado-Fragua, M.D.; Fayosse, A.; Yerramalla, M.S.; van Sloten, T.T.; Tabak, A.G.; Kivimaki, M.; Sabia, S.; Singh-Manoux, A. Association of Metabolic Syndrome With Incident Dementia: Role of Number and Age at Measurement of Components in a 28-Year Follow-up of the Whitehall II Cohort Study. Diabetes Care 2022, 45, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Razay, G.; Vreugdenhil, A.; Wilcock, G. The Metabolic Syndrome and Alzheimer Disease. Arch. Neurol. 2007, 64, 93–96. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, S.M.; Jeong, D.H.; Lee, S.K.; Ahn, M.E.; Ryu, O.H. Associations between Metabolic Syndrome and Type of Dementia: Analysis Based on the National Health Insurance Service Database of Gangwon Province in South Korea. Diabetol. Metab. Syndr. 2021, 13, 4. [Google Scholar] [CrossRef]
- Ezkurdia, A.; Ramírez, M.J.; Solas, M. Metabolic Syndrome as a Risk Factor for Alzheimer’s Disease: A Focus on Insulin Resistance. Int. J. Mol. Sci. 2023, 24, 4354. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Feldman, E.L. Insulin Resistance as a Key Link for the Increased Risk of Cognitive Impairment in the Metabolic Syndrome. Exp. Mol. Med. 2015, 47, e149. [Google Scholar] [CrossRef]
- Hamzé, R.; Delangre, E.; Tolu, S.; Moreau, M.; Janel, N.; Bailbé, D.; Movassat, J. Type 2 Diabetes Mellitus and Alzheimer’s Disease: Shared Molecular Mechanisms and Potential Common Therapeutic Targets. Int. J. Mol. Sci. 2022, 23, 15287. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.; Setter, S.M. Type 3 Diabetes: Brain Diabetes? U.S. Pharm. 2010, 35, 36–41. [Google Scholar]
- Tang, S.; Gao, L.; Qin, D.; Wang, H.; Huang, L.; Wu, S.; Bai, S.; Du, N.; Sun, Y.; Wang, P.; et al. Toxic Effects of Arsenic on Four Freshwater Aquatic Species and Its Transformation Metabolism in Crucian Carp (Carassius Auratus). Toxics 2024, 12, 221. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yuan, X.; Tian, X.; Gao, J.; Xie, M.; Xie, Z.; Song, R.; Ou, D. Investigating Immunotoxicity in Black Carp (Mylopharyngodon Piceus) Fingerlings Exposed to Niclosamide. Life 2024, 14, 544. [Google Scholar] [CrossRef]
- Ranjan, S.; Sharma, P.K. Study of Learning and Memory in Type 2 Diabetic Model of Zebrafish (Danio Rerio). Endocr. Metab. Sci. 2020, 1, 100058. [Google Scholar] [CrossRef]
- Robea, M.A.; Jijie, R.; Nicoara, M.; Plavan, G.; Ciobica, A.S.; Solcan, C.; Audira, G.; Hsiao, C.-D.; Strungaru, S.A. Vitamin C Attenuates Oxidative Stress and Behavioral Abnormalities Triggered by Fipronil and Pyriproxyfen Insecticide Chronic Exposure on Zebrafish Juvenile. Antioxidants 2020, 9, 944. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, J.; Zhao, Y.; Wu, Y. Human Exposure of Fipronil Insecticide and the Associated Health Risk. J. Agric. Food Chem. 2022, 70, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Beggel, S.; Werner, I.; Connon, R.E.; Geist, J.P. Impacts of the Phenylpyrazole Insecticide Fipronil on Larval Fish: Time-Series Gene Transcription Responses in Fathead Minnow (Pimephales Promelas) Following Short-Term Exposure. Sci. Total Environ. 2012, 426, 160–165. [Google Scholar] [CrossRef] [PubMed]
- da Silva Pinto, T.J.; Moreira, R.A.; da Silva, L.C.M.; Yoshii, M.P.C.; Goulart, B.V.; Fraga, P.D.; Montagner, C.C.; Daam, M.A.; Espindola, E.L.G. Impact of 2,4-D and Fipronil on the Tropical Midge Chironomus Sancticaroli (Diptera: Chironomidae). Ecotoxicol. Environ. Saf. 2021, 209, 111778. [Google Scholar] [CrossRef] [PubMed]
- Grossman, L.; Utterback, E.; Stewart, A.; Gaikwad, S.; Chung, K.M.; Suciu, C.; Wong, K.; Elegante, M.; Elkhayat, S.; Tan, J.; et al. Characterization of Behavioral and Endocrine Effects of LSD on Zebrafish. Behav. Brain Res. 2010, 214, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Zizza, M.; Di Lorenzo, M.; Laforgia, V.; Furia, E.; Sindona, G.; Canonaco, M.; Facciolo, R.M. HSP90 and PCREB Alterations Are Linked to Mancozeb-Dependent Behavioral and Neurodegenerative Effects in a Marine Teleost. Toxicol. Appl. Pharmacol. 2017, 323, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Cleal, M.; Fontana, B.D.; Ranson, D.C.; McBride, S.D.; Swinny, J.D.; Redhead, E.S.; Parker, M.O. The Free-Movement Pattern Y-Maze: A Cross-Species Measure of Working Memory and Executive Function. Behav. Res. Methods 2021, 53, 536–557. [Google Scholar] [CrossRef] [PubMed]
- Fontana, B.D.; Cleal, M.; Clay, J.M.; Parker, M.O. Zebrafish (Danio Rerio) Behavioral Laterality Predicts Increased Short-Term Avoidance Memory but Not Stress-Reactivity Responses. Anim. Cogn. 2019, 22, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Maximino, C.; Marques De Brito, T.; De Mattos Dias, C.A.G.; Gouveia, A., Jr.; Morato, S. Scototaxis as Anxiety-like Behavior in Fish. Nat. Protoc. 2010, 5, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Andrés Juan, C.; Plou, F.J.; Pérez-Lebeña, E. Superoxide Anion Chemistry—Its Role at the Core of the Innate Immunity. Int. J. Mol. Sci. 2023, 24, 1841. [Google Scholar] [CrossRef] [PubMed]
- Fujii, J.; Homma, T.; Osaki, T. Superoxide Radicals in the Execution of Cell Death. Antioxidants 2022, 11, 501. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar]
- Awang Daud, D.M.; Ahmedy, F.; Baharuddin, D.M.P.; Zakaria, Z.A. Oxidative Stress and Antioxidant Enzymes Activity after Cycling at Different Intensity and Duration. Appl. Sci. 2022, 12, 9161. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Li, P.; Akk, G. The Insecticide Fipronil and Its Metabolite Fipronil Sulphone Inhibit the Rat A1β2γ2L GABA A Receptor. Br. J. Pharmacol. 2008, 155, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Trang, A.; Khandhar, P.B. Physiology, Acetylcholinesterase; StatPearls: St. Petersburg, FL, USA, 2019. [Google Scholar]
- Martínez-Orgado, J.; Martínez-Vega, M.; Silva, L.; Romero, A.; de Hoz-Rivera, M.; Villa, M.; del Pozo, A. Protein Carbonylation as a Biomarker of Oxidative Stress and a Therapeutic Target in Neonatal Brain Damage. Antioxidants 2023, 12, 1839. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides and Human Chronic Diseases: Evidences, Mechanisms, and Perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. [Google Scholar] [CrossRef]
- Saldana, T.M.; Basso, O.; Hoppin, J.A.; Baird, D.D.; Knott, C.; Blair, A.; Alavanja, M.C.R.; Sandler, D.P. Pesticide Exposure and Self-Reported Gestational Diabetes Mellitus in the Agricultural Health Study. Diabetes Care 2007, 30, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Thayer, K.A.; Heindel, J.J.; Bucher, J.R.; Gallo, M.A. Role of Environmental Chemicals in Diabetes and Obesity: A National Toxicology Program Workshop Review. Environ. Health Perspect. 2012, 120, 779–789. [Google Scholar] [CrossRef]
- Hayden, K.M.; Norton, M.C.; Darcey, D.; Østbye, T.; Zandi, P.P.; Breitner, J.C.S.; Welsh-Bohmer, K.A. Occupational Exposure to Pesticides Increases the Risk of Incident AD: The Cache County Study. Neurology 2010, 74, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Haque, E.; Ward, A.C. Zebrafish as a Model to Evaluate Nanoparticle Toxicity. Nanomaterials 2018, 8, 561. [Google Scholar] [CrossRef] [PubMed]
- MacPhail, R.C.; Hunter, D.L.; Irons, T.D.; Padilla, S. Locomotion and Behavioral Toxicity in Larval Zebrafish: Background, Methods, and Data. In Zebrafish: Methods for Assessing Drug Safety and Toxicity; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lu, J.; Zhang, M.; Lu, L. Tissue Metabolism, Hematotoxicity, and Hepatotoxicity of Trichlorfon in Carassius Auratus Gibelio after a Single Oral Administration. Front. Physiol. 2018, 9, 551. [Google Scholar] [CrossRef] [PubMed]
- Dinu, D.; Marinescu, D.; Munteanu, M.C.; Staicu, A.C.; Costache, M.; Dinischiotu, A. Modulatory Effects of Deltamethrin on Antioxidant Defense Mechanisms and Lipid Peroxidation in Carassius Auratus Gibelio Liver and Intestine. Arch. Environ. Contam. Toxicol. 2010, 58, 757–764. [Google Scholar] [CrossRef]
- Macirella, R.; Madeo, G.; Sesti, S.; Tripepi, M.; Bernabò, I.; Godbert, N.; La Russa, D.; Brunelli, E. Exposure and Post-Exposure Effects of Chlorpyrifos on Carassius Auratus Gills: An Ultrastructural and Morphofunctional Investigation. Chemosphere 2020, 251, 126434. [Google Scholar] [CrossRef] [PubMed]
- Falfushynska, H.I.; Gnatyshyna, L.L.; Stoliar, O.B. Population-Related Molecular Responses on the Effect of Pesticides in Carassius Auratus Gibelio. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2012, 155, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, W.; Jiang, Y.; Chu, W. Diazinon Exposure Produces Histological Damage, Oxidative Stress, Immune Disorders and Gut Microbiota Dysbiosis in Crucian Carp (Carassius Auratus Gibelio). Environ. Pollut. 2021, 269, 116129. [Google Scholar] [CrossRef]
- Zhan, W.; Xu, Y.; Li, A.H.; Zhang, J.; Schramm, K.W.; Kettrup, A. Endocrine Disruption by Hexachlorobenzene in Crucian Carp (Carassius Auratus Gibelio). Bull. Environ. Contam. Toxicol. 2000, 65, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Keifer, M.C.; Firestone, J. Neurotoxicity of Pesticides. J. Agromedicine 2007, 12, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Sartori, S.B.; Landgraf, R.; Singewald, N. The Clinical Implications of Mouse Models of Enhanced Anxiety. Future Neurol. 2011, 6, 531–571. [Google Scholar] [CrossRef] [PubMed]
- Packard, A.E.B.; Egan, A.E.; Ulrich-Lai, Y.M. HPA Axis Interactions with Behavioral Systems. Compr. Physiol. 2016, 6, 1897–1934. [Google Scholar] [CrossRef] [PubMed]
- Grupe, D.W.; Nitschke, J.B. Uncertainty and Anticipation in Anxiety: An Integrated Neurobiological and Psychological Perspective. Nat. Rev. Neurosci. 2013, 14, 488–501. [Google Scholar] [CrossRef] [PubMed]
- Jesuthasan, S. Fear, Anxiety, and Control in the Zebrafish. Dev. Neurobiol. 2012, 72, 395–403. [Google Scholar] [CrossRef]
- Beecher, K.; Wang, J.; Jacques, A.; Chaaya, N.; Chehrehasa, F.; Belmer, A.; Bartlett, S.E. Sucrose Consumption Alters Serotonin/Glutamate Co-Localisation Within the Prefrontal Cortex and Hippocampus of Mice. Front. Mol. Neurosci. 2021, 14, 678267. [Google Scholar] [CrossRef]
- Abreu, C.C.; Fernandes, T.N.; Henrique, E.P.; Pereira, P.D.C.; Marques, S.B.; Herdeiro, S.L.S.; Oliveira, F.R.R.; Magalhães, N.G.M.; Anthony, D.C.; Melo, M.A.D.; et al. Small-Scale Environmental Enrichment and Exercise Enhance Learning and Spatial Memory of Carassius Auratus, and Increase Cell Proliferation in the Telencephalon: An Exploratory Study. Braz. J. Med. Biol. Res. 2019, 52, e8026. [Google Scholar] [CrossRef]
- Overmyer, J.P.; Mason, B.N.; Armbrust, K.L. Acute Toxicity of Imidacloprid and Fipronil to a Nontarget Aquatic Insect, Simulium Vittatum Zetterstedt Cytospecies IS-7. Bull. Environ. Contam. Toxicol. 2005, 74, 872–879. [Google Scholar] [CrossRef]
- Hainzl, D.; Cole, L.M.; Casida, J.E. Mechanisms for Selective Toxicity of Fipronil Insecticide and Its Sulfone Metabolite and Desulfinyl Photoproduct. Chem. Res. Toxicol. 1998, 11, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Ulrich-Lai, Y.M.; Ostrander, M.M.; Herman, J.P. HPA Axis Dampening by Limited Sucrose Intake: Reward Frequency vs. Caloric Consumption. Physiol. Behav. 2011, 103, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Ulrich-Lai, Y.M. Self-Medication with Sucrose. Curr. Opin. Behav. Sci. 2016, 9, 78–83. [Google Scholar] [CrossRef]
- Spinelli, M.; Fusco, S.; Grassi, C. Brain Insulin Resistance and Hippocampal Plasticity: Mechanisms and Biomarkers of Cognitive Decline. Front. Neurosci. 2019, 10, 788. [Google Scholar] [CrossRef] [PubMed]
- Stranahan, A.M.; Norman, E.D.; Lee, K.; Cutler, R.G.; Telljohann, R.S.; Egan, J.M.; Mattson, M.P. Diet-Induced Insulin Resistance Impairs Hippocampal Synaptic Plasticity and Cognition in Middle-Aged Rats. Hippocampus 2008, 18, 1085–1088. [Google Scholar] [CrossRef] [PubMed]
- Buzenchi Proca, T.M.; Solcan, C.; Solcan, G. Neurotoxicity of Some Environmental Pollutants to Zebrafish. Life 2024, 14, 640. [Google Scholar] [CrossRef] [PubMed]
- Saint-Amant, L.; Drapeau, P. Time Course of the Development of Motor Behaviors in the Zebrafish Embryo. J. Neurobiol. 1998, 37, 622–632. [Google Scholar] [CrossRef]
- Stehr, C.M.; Linbo, T.L.; Incardona, J.P.; Scholz, N.L. The Developmental Neurotoxicity of Fipronil: Notochord Degeneration and Locomotor Defects in Zebrafish Embryos and Larvae. Toxicol. Sci. 2006, 92, 270–278. [Google Scholar] [CrossRef]
- Patel, A.; Chavan, G.; Nagpal, A.K. Navigating the Neurological Abyss: A Comprehensive Review of Organophosphate Poisoning Complications. Cureus 2024, 16, e54422. [Google Scholar] [CrossRef] [PubMed]
- Modlinska, K.; Chrzanowska, A.; Goncikowska, K.; Pisula, W. Influence of Excessive Sucrose Consumption on Exploratory Behaviour in Rats—Possible Implications for the Brain Reward System. Behav. Brain Res. 2023, 436, 114085. [Google Scholar] [CrossRef]
- Darland, T.; Dowling, J.E. Behavioral Screening for Cocaine Sensitivity in Mutagenized Zebrafish. Proc. Natl. Acad. Sci. USA 2001, 98, 11691–11696. [Google Scholar] [CrossRef]
- Popova, L.D.; Vasylyeva, I.M.; Nakonechnaya, O.A. Interrelation between Anxiety Level and Aggressiveness. Int. J. Neurorehabilit. 2017, 4, e242. [Google Scholar] [CrossRef]
- Smith, J.P.; Prince, M.A.; Achua, J.K.; Robertson, J.M.; Anderson, R.T.; Ronan, P.J.; Summers, C.H. Intensity of Anxiety Is Modified via Complex Integrative Stress Circuitries. Psychoneuroendocrinology 2016, 63, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Neumann, I.D.; Veenema, A.H.; Beiderbeck, D.I. Aggression and Anxiety: Social Context and Neurobiological Links. Front. Behav. Neurosci. 2010, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Shariff, M.; Klenowski, P.; Morgan, M.; Patkar, O.; Mu, E.; Bellingham, M.; Belmer, A.; Bartlett, S.E. Binge-like Sucrose Consumption Reduces the Dendritic Length and Complexity of Principal Neurons in the Adolescent Rat Basolateral Amygdala. PLoS ONE 2017, 12, e0183063. [Google Scholar] [CrossRef] [PubMed]
- De Jong, J.W.; Vanderschuren, L.J.M.J.; Adan, R.A.H. The Mesolimbic System and Eating Addiction: What Sugar Does and Does Not Do. Curr. Opin. Behav. Sci. 2016, 9, 118–125. [Google Scholar] [CrossRef]
- Tobiansky, D.J.; Kachkovski, G.V.; Enos, R.T.; Schmidt, K.L.; Angela Murphy, E.; Soma, K.K. Sucrose Consumption Alters Steroid and Dopamine Signalling in the Female Rat Brain. J. Endocrinol. 2020, 245, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, A.; Raine, A. Violence Associated with Anger and Impulsivity. In The Neuropsychology of Emotion; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Renaud, J.; Clouet, A.; Costa, G.; Beaulieu, J.; Sergi, D.; Martinoli, M.-G. Long-Term Diabetic Hyperglycaemia Modifies Social Behaviour in Rats. Endocr. Metab. Sci. 2024, 16, 100197. [Google Scholar] [CrossRef]
- Raymond, C.; Pichette, F.; Beaudin, M.; Cernik, R.; Marin, M.F. Vulnerability to Anxiety Differently Predicts Cortisol Reactivity and State Anxiety during a Laboratory Stressor in Healthy Girls and Boys. J. Affect. Disord. 2023, 331, 425–433. [Google Scholar] [CrossRef]
- dos Santos, M.M.; de Macedo, G.T.; Prestes, A.S.; Loro, V.L.; Heidrich, G.M.; Picoloto, R.S.; Rosemberg, D.B.; Barbosa, N.V. Hyperglycemia Elicits Anxiety-like Behaviors in Zebrafish: Protective Role of Dietary Diphenyl Diselenide. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 85, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Jacques, A.; Chaaya, N.; Beecher, K.; Ali, S.A.; Belmer, A.; Bartlett, S. The Impact of Sugar Consumption on Stress Driven, Emotional and Addictive Behaviors. Neurosci. Biobehav. Rev. 2019, 103, 178–199. [Google Scholar] [CrossRef]
- Nordman, J.C.; Ma, X.; Gu, Q.; Potegal, M.; Li, H.; Kravitz, A.V.; Li, Z. Potentiation of Divergent Medial Amygdala Pathways Drives Experience-Dependent Aggression Escalation. J. Neurosci. 2020, 40, 4858–4880. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Audira, G.; Malhotra, N.; Uapipatanakul, B.; Chen, J.R.; Lai, Y.H.; Huang, J.C.; Chen, K.H.C.; Lai, H.T.; Hsiao, C. Der Multiple Screening of Pesticides Toxicity in Zebrafish and Daphnia Based on Locomotor Activity Alterations. Biomolecules 2020, 10, 1224. [Google Scholar] [CrossRef] [PubMed]
- Felsztyna, I.; Sánchez-Borzone, M.E.; Miguel, V.; García, D.A. The Insecticide Fipronil Affects the Physical Properties of Model Membranes: A Combined Experimental and Molecular Dynamics Simulations Study in Langmuir Monolayers. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183378. [Google Scholar] [CrossRef]
- Audira, G.; Siregar, P.; Chen, J.R.; Lai, Y.H.; Huang, J.C.; Hsiao, C.-D. Systematical Exploration of the Common Solvent Toxicity at Whole Organism Level by Behavioral Phenomics in Adult Zebrafish. Environ. Pollut. 2020, 266, 115239. [Google Scholar] [CrossRef] [PubMed]
- Mody, I.; Maguire, J. The Reciprocal Regulation of Stress Hormones and GABA A Receptors. Front. Cell. Neurosci. 2012, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Camille Melón, L.; Maguire, J. GABAergic Regulation of the HPA and HPG Axes and the Impact of Stress on Reproductive Function. J. Steroid Biochem. Mol. Biol. 2016, 160, 196–203. [Google Scholar] [CrossRef]
- Roelofs, K. Freeze for Action: Neurobiological Mechanisms in Animal and Human Freezing. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160206. [Google Scholar] [CrossRef]
- Mattar, P.; Toledo-Valenzuela, L.; Hernández-Cáceres, M.P.; Peña-Oyarzún, D.; Morselli, E.; Perez-Leighton, C. Integrating the Effects of Sucrose Intake on the Brain and White Adipose Tissue: Could Autophagy Be a Possible Link? Obesity 2022, 30, 1143–1155. [Google Scholar] [CrossRef]
- Sun, S.; Araki, Y.; Hanzawa, F.; Umeki, M.; Kojima, T.; Nishimura, N.; Ikeda, S.; Mochizuki, S.; Oda, H. High Sucrose Diet-Induced Dysbiosis of Gut Microbiota Promotes Fatty Liver and Hyperlipidemia in Rats. J. Nutr. Biochem. 2021, 93, 108621. [Google Scholar] [CrossRef] [PubMed]
- Aouichat, S.; Chayah, M.; Bouguerra-Aouichat, S.; Agil, A. Time-Restricted Feeding Improves Body Weight Gain, Lipid Profiles, and Atherogenic Indices in Cafeteria-Diet-Fed Rats: Role of Browning of Inguinal White Adipose Tissue. Nutrients 2020, 12, 2185. [Google Scholar] [CrossRef]
- Suchecki, D.; Antunes, J.; Tufik, S. Palatable Solutions during Paradoxical Sleep Deprivation: Reduction of Hypothalamic-Pituitary-Adrenal Axis Activity and Lack of Effect on Energy Imbalance. J. Neuroendocrinol. 2003, 15, 815–821. [Google Scholar] [CrossRef]
- Fendri, C.; Mechri, A.; Khiari, G.; Othman, A.; Kerkeni, A.; Gaha, L. Oxidative Stress Involvement in Schizophrenia Pathophysiology: A Review. L’Encéphale 2006, 32, 244–252. [Google Scholar] [CrossRef]
- Shen, C.; Liu, C.; Qiu, A. Metabolism-Related Brain Morphology Accelerates Aging and Predicts Neurodegenerative Diseases and Stroke: A UK Biobank Study. Transl. Psychiatry 2023, 13, 233. [Google Scholar] [CrossRef]
- Rosa, A.C.; Bruni, N.; Meineri, G.; Corsi, D.; Cavi, N.; Gastaldi, D.; Dosio, F. Strategies to Expand the Therapeutic Potential of Superoxide Dismutase by Exploiting Delivery Approaches. Int. J. Biol. Macromol. 2021, 168, 846–865. [Google Scholar] [CrossRef]
- Pomatto, L.C.D.; Davies, K.J.A. The Role of Declining Adaptive Homeostasis in Ageing. J. Physiol. 2017, 595, 7275–7309. [Google Scholar] [CrossRef]
- Strilbytska, O.; Strutynska, T.; Semaniuk, U.; Burdyliyk, N.; Bubalo, V.; Lushchak, O. Dietary Sucrose Determines Stress Resistance, Oxidative Damages, and Antioxidant Defense System in Drosophila. Scientifica 2022, 2022, 7262342. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Ośko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.; Kaczyńska, K. Mitochondrial Oxidative Stress—A Causative Factor and Therapeutic Target in Many Diseases. Int. J. Mol. Sci. 2021, 22, 13384. [Google Scholar] [CrossRef]
- Cenini, G.; Lloret, A.; Cascella, R. Oxidative Stress and Mitochondrial Damage in Neurodegenerative Diseases: From Molecular Mechanisms to Targeted Therapies. Oxid. Med. Cell. Longev. 2020, 2020, 1270256. [Google Scholar] [CrossRef]
- Guo, C.Y.; Sun, L.; Chen, X.P.; Zhang, D.S. Oxidative Stress, Mitochondrial Damage and Neurodegenerative Diseases. Neural Regen. Res. 2013, 8, 2003–2014. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Plascencia-Villa, G.; Perry, G. Roles of Oxidative Stress in Synaptic Dysfunction and Neuronal Cell Death in Alzheimer’s Disease. Antioxidants 2023, 12, 1628. [Google Scholar] [CrossRef]
- Gorlova, A.; Svirin, E.; Pavlov, D.; Cespuglio, R.; Proshin, A.; Schroeter, C.A.; Lesch, K.P.; Strekalova, T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int. J. Mol. Sci. 2023, 24, 915. [Google Scholar] [CrossRef] [PubMed]
- Talebi, M.; Mohammadi Vadoud, S.A.; Haratian, A.; Talebi, M.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Samarghandian, S. The Interplay between Oxidative Stress and Autophagy: Focus on the Development of Neurological Diseases. Behav. Brain Funct. 2022, 18, 3. [Google Scholar] [CrossRef]
- Hasselmo, M.E. The Role of Acetylcholine in Learning and Memory. Curr. Opin. Neurobiol. 2006, 16, 710–715. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rarinca, V.; Hritcu, L.D.; Burducea, M.; Plavan, G.; Lefter, R.; Burlui, V.; Romila, L.; Ciobică, A.; Todirascu-Ciornea, E.; Barbacariu, C.-A. Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen. Curr. Issues Mol. Biol. 2024, 46, 14168-14189. https://doi.org/10.3390/cimb46120848
Rarinca V, Hritcu LD, Burducea M, Plavan G, Lefter R, Burlui V, Romila L, Ciobică A, Todirascu-Ciornea E, Barbacariu C-A. Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen. Current Issues in Molecular Biology. 2024; 46(12):14168-14189. https://doi.org/10.3390/cimb46120848
Chicago/Turabian StyleRarinca, Viorica, Luminita Diana Hritcu, Marian Burducea, Gabriel Plavan, Radu Lefter, Vasile Burlui, Laura Romila, Alin Ciobică, Elena Todirascu-Ciornea, and Cristian-Alin Barbacariu. 2024. "Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen" Current Issues in Molecular Biology 46, no. 12: 14168-14189. https://doi.org/10.3390/cimb46120848
APA StyleRarinca, V., Hritcu, L. D., Burducea, M., Plavan, G., Lefter, R., Burlui, V., Romila, L., Ciobică, A., Todirascu-Ciornea, E., & Barbacariu, C.-A. (2024). Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen. Current Issues in Molecular Biology, 46(12), 14168-14189. https://doi.org/10.3390/cimb46120848