Semi-Empirical Approach to Evaluating Model Fit for Sea Clutter Returns: Focusing on Future Measurements in the Adriatic Sea
<p>Comparison of empirical and semi-empirical estimates of KL divergence. (<b>a</b>) Forward. (<b>b</b>) Reverse.</p> "> Figure 2
<p>Comparison of MSE of empirical and semi-empirical estimates of KL divergence. (<b>a</b>) Forward. (<b>b</b>) Reverse.</p> "> Figure 3
<p>Comparison of empirical and semi-empirical estimates. (<b>a</b>) SH distance estimation. (<b>b</b>) MSE of SH distance estimation.</p> "> Figure 4
<p>Comparison of empirical and semi-empirical estimates of KL divergence using GP distribution as model and real sea clutter data. (<b>a</b>) Forward. (<b>b</b>) Reverse.</p> "> Figure 5
<p>Comparison of empirical and semi-empirical estimates of KL divergence using K distribution as model and real sea clutter data. (<b>a</b>) Forward. (<b>b</b>) Reverse.</p> "> Figure 6
<p>Comparison of variances of empirical and semi-empirical estimates of KL divergence using GP and K distribution as models and real sea clutter data. (<b>a</b>) Forward. (<b>b</b>) Reverse.</p> "> Figure 7
<p>Comparison of empirical and semi-empirical estimates of SH distance using GP and K distribution as models and real sea clutter data. (<b>a</b>) K distribution. (<b>b</b>) GP distribution.</p> "> Figure 8
<p>Comparison of variances of empirical and semi-empirical estimates of SH distance using GP and K distributions as models and real sea clutter data.</p> "> Figure 9
<p>Semi-empirical estimation of KL divergence between an empirical dataset following a unit-mean exponential distribution, <math display="inline"><semantics> <mrow> <mi>Exp</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, and a model distribution following a normal distribution, <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) Forward estimation. (<b>b</b>) Reverse estimation.</p> "> Figure 10
<p>MSE of the KL divergence estimation between an empirical dataset following a unit-mean exponential distribution, <math display="inline"><semantics> <mrow> <mi>Exp</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, and a model distribution following a normal distribution, <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) Forward. (<b>b</b>) Reverse.</p> "> Figure 11
<p>Semi-empirical estimation of SH distance between empirical dataset of samples from normal distribution <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics></math> and exponential model distribution <math display="inline"><semantics> <mrow> <mi>Exp</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) SH distance estimation. (<b>b</b>) MSE of SH distance estimation.</p> "> Figure 12
<p>Semi-empirical estimation of the KL divergence between two normal distributions, with the empirical dataset following <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> and the model distribution following <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) Forward estimation. (<b>b</b>) Reverse estimation.</p> "> Figure 13
<p>MSE of KL divergence estimation between two normal distributions, empirical dataset following <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> and model distribution following <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) Forward. (<b>b</b>) Reverse.</p> "> Figure 14
<p>Semi-empirical estimation of SH distance between empirical dataset of samples from normal distribution <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> and normal model distribution <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) SH distance estimation. (<b>b</b>) MSE of SH distance estimation.</p> "> Figure 15
<p>Semi-empirical estimation of SH distance between empirical dataset of samples from normal distribution <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> and normal model distribution <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) SH distance estimation. (<b>b</b>) MSE of SH distance estimation.</p> "> Figure 16
<p>Semi-empirical estimation of SH distance between empirical dataset of samples from normal distribution <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> and normal model distribution <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) SH distance estimation. (<b>b</b>) MSE of SH distance estimation.</p> "> Figure 17
<p>Semi-empirical estimation of SH distance between empirical dataset of samples from normal distribution <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics></math> and normal model distribution <math display="inline"><semantics> <mrow> <mi mathvariant="script">N</mi> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) SH distance estimation. (<b>b</b>) MSE of SH distance estimation.</p> ">
Abstract
:1. Introduction
2. Preliminaries
3. Derivation of Semi-Empirical Estimator
3.1. Semi-Empirical KL Divergence Estimator
3.2. Semi-Parametric SH Distance Estimator
4. Numerical Examples
4.1. Radar Sea Clutter
4.2. Additional Numerical Examples
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDF | Cumulative Distribution Function |
CGIG | Compound Gaussian Inverse Gaussian |
COTS | Commercial Of the Shelf |
GP | Generalised Pareto |
i.i.d. | independent and identically distributed |
IPIX | Intelligent PIxel processing X-band |
KL | Kullback-Leibler |
KS | Kolmogorov-Smirnov |
MSE | Mean Square Error |
Probability Distribution Function | |
RIB | Rigid Inflatable Boat |
RiIG | Ricean Inverse Gaussian |
SH | Squared Hellinger |
Appendix A
Appendix B
Step | Description |
---|---|
1 | |
2 | If distribution is GP, then generate sample from gamma distribution (A1) with shape and scale parameters , else, generate sample from gamma distribution with shape and scale parameters |
3 | If distribution is GP, then , else, continue |
4 | Generate in-phase sample from zero-mean Gaussian distribution with variance , i.e., |
5 | Generate quadrature-phase sample from zero-mean Gaussian distribution with variance , i.e., |
6 | Amplitude of compound distribution is |
7 | If , then else, go to Step 2 |
8 | If , go to Step 2, else, stop |
References
- Vondra, B.; Bonefačić, D.; Mišković, T. Employment of Semi-Parametric Radar Sea Clutter Model in Civilian Surveillance of Croatian Part of Adriatic Sea. In Annual of the Croatian Academy of Engineering; Andročec, V., Mrša, V., Rogale, D., Eds.; Akademija Tehničkih Znanosti Hrvatske (HATZ): Kačićeva, Zagreb, 2021; Volume 2020, pp. 42–56. [Google Scholar]
- Katalinić, M.; Ćorak, M.; Parunov, J. Analysis of Wave Heights and Wind Speeds in the Adriatic Sea. In Maritime Technology and Engineering; Chapter Analysis of Wave Heights and Wind Speeds in the Adriatic Sea; Soares, C.G., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2015; pp. 1389–1394. [Google Scholar]
- Dong, Y. Distribution of X-Band High Resolution and High Grazing Angle Sea Clutter; Technical Report; Defence Science and Technology Organisation: Edinburgh, Australia, 2006.
- Rosenberg, L.; Crisp, D.J.; Stacy, N.J. Analysis of the KK-distribution with X-band Medium Grazing Angle Sea-Clutter. IET Radar Sonar Navig. 2010, 4, 209–222. [Google Scholar] [CrossRef]
- Nohara, T.J.; Haykin, S. Canadian East Coast Radar Trials and the K-distribution. IEE Proc. F-Radar Signal Process. 1991, 138, 80–88. [Google Scholar] [CrossRef]
- Sangston, K.J.; Gini, F.; Greco, M.S. Coherent Radar Target Detection in Heavy-Tailed Compound-Gaussian Clutter. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 64–77. [Google Scholar] [CrossRef]
- Ollila, E.; Tyler, D.E.; Koivunen, V.; Poor, H.V. Complex Elliptically Symmetric Distributions: Survey, New Results and Applications. IEEE Trans. Signal Process. 2012, 60, 5597–5625. [Google Scholar] [CrossRef]
- Johnsen, T. Characterization of X-band Radar Sea-Clutter in a Limited Fetch Condition from Low to High Grazing Angles. In Proceedings of the IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015; pp. 109–114. [Google Scholar]
- Johnsen, T.; Ødegaard, N.; Knapskog, A.O. X-Band Radar Sea-Clutter Measurements from Low to Medium Grazing Angles Recorded from a Helicopter Platform; Meeting Proceedings STO-MP-SET-239; Science and Technology Organisation: Neuilly-sur-Seine, France, 2016. [Google Scholar]
- Song, C.; Xiuwen, L. Statistical Analysis of X-band Sea Clutter at Low Grazing Angles. In Proceedings of the 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Bangkok, Thailand, 30 October–1 November 2020; pp. 141–144. [Google Scholar] [CrossRef]
- Bocquet, S. Analysis and Simulation of Low Grazing Angle X-Band Coherent Radar Sea Clutter Using Memoryless Nonlinear Transformations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Bouvier, C.; Martinet, L.; Favier, G.; Artaud, M. Simulation of Radar Sea Clutter Using Autoregressive Modelling and K-Distribution. In Proceedings of the IEEE International Radar Conference, Alexandria, VA, USA, 8–11 May 1995; pp. 425–430. [Google Scholar]
- Chan, H.C. Radar Sea-Clutter at Low Grazing Angles. IEE Proc. F-Radar Signal Process. 1990, 137, 102–112. [Google Scholar] [CrossRef]
- Crisp, D.J.; Rosenberg, L.; Stacy, N.J.; Dong, Y. Modelling X-band Sea Clutter with the K-distribution: Shape Parameter Variation. In Proceedings of the 2009 International Radar Conference “Surveillance for a Safer World”, Bordeaux, France, 12–26 October 2009; pp. 1–6. [Google Scholar]
- Ollila, E.; Tyler, D.E.; Koivunen, V.; Poor, H.V. Compound-Gaussian Clutter Modeling with an Inverse Gaussian Texture Distribution. IEEE Signal Process. Lett. 2012, 19, 876–879. [Google Scholar] [CrossRef]
- Mandal, S.K.; Bhattacharya, C. Validation of Stochastic Properties of High Resolution Clutter Data from IPIX Radar Data. In Proceedings of the 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), Vallabh Vidyanagar, India, 1–2 March 2013; pp. 251–255. [Google Scholar] [CrossRef]
- Mezache, A.; Soltani, F.; Sahed, M.; Chalabi, I. Model for Non-Rayleigh Clutter Amplitudes Using Compound Inverse Gaussian Distribution: An Experimental Analysis. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 142–153. [Google Scholar] [CrossRef]
- Eltoft, T. The Rician Inverse Gaussian Distribution: A New Model for Non-Rayleigh Signal Amplitude Statistics. IEEE Trans. Image Process. 2005, 14, 1722–1735. [Google Scholar] [CrossRef]
- Strempel, M.D.; Villiers, J.P.D.; Cilliers, J.E.; McDonald, A. Distribution Analysis of Segmented Wave Sea Clutter in Littoral Environments. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015; pp. 133–138. [Google Scholar]
- Angelliaume, S.; Rosenberg, L.; Ritchie, M. Modeling the Amplitude Distribution of Radar Sea Clutter. Remote Sens. 2019, 11, 319. [Google Scholar] [CrossRef]
- Gierull, C.H.; Sikaneta, I. A Compound-plus-Noise Model for Improved Vessel Detection in Non-Gaussian SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1444–1453. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, J.; Zhang, X.; Gao, G.; Zhang, Y.; Meng, J.; Liu, G.; Zhang, Z.; Han, Q.; Jia, Y.; et al. Modeling and Parameter Representation of Sea Clutter Amplitude at Different Grazing Angles. IEEE J. Miniaturiz. Air Space Syst. 2022, 3, 284–293. [Google Scholar] [CrossRef]
- Xia, X.Y.; Shui, P.L.; Zhang, Y.S.; Li, X.; Xu, X.Y. An Empirical Model of Shape Parameter of Sea Clutter Based on X-Band Island-Based Radar Database. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3503205. [Google Scholar] [CrossRef]
- Jakeman, E.; Pusey, P.N. A Model for Non-Rayleigh Sea Echo. IEEE Trans. Antennas Propag. 1976, 24, 806–814. [Google Scholar] [CrossRef]
- Middleton, D. New Physical-Statistical Methods and Models for Clutter and Reverberation: The KA-Distribution and Related Probability Structures. IEEE J. Ocean. Eng. 1999, 24, 261–284. [Google Scholar] [CrossRef]
- Farshchian, M.; Posner, F.L. The Pareto Distribution for Low Grazing Angle and High Resolution X-band Sea Clutter. In Proceedings of the 2010 IEEE Radar Conference, Arlington, VA, USA, 10–14 May 2010; pp. 789–793. [Google Scholar]
- Papoulis, A. Probability, Random Variables and Stochastic Processes; McGraw-Hill, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Rosenberg, L.; Watts, S.; Bocquet, S. Application of the K + Rayleigh Distribution to High Grazing Angle Sea-Clutter. In Proceedings of the 2014 International Radar Conference, Lille, France, 13–17 October 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Rosenberg, L.; Watts, S.; Greco, M.S. Modeling the Statistics of Microwave Radar Sea Clutter. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 44–75. [Google Scholar] [CrossRef]
- Gao, G. Statistical Modeling of SAR Images: A Survey. Sensors 2010, 10, 775–795. [Google Scholar] [CrossRef]
- Pierce, R.D. RCS Characterization Using the Alpha-Stable Distribution. In Proceedings of the 1996 IEEE National Radar Conference, Ann Arbor, MI, USA, 13–16 May 1996; pp. 154–159. [Google Scholar]
- Hallin, M.; Mordant, G.; Segers, J. Multivariate Goodness-of-Fit Tests Based on Wasserstein Distance. Electron. J. Stat. 2021, 15, 1328–1371. [Google Scholar] [CrossRef]
- del Barrio, E.; Sanz, A.G.; Loubes, J.M. Central Limit Theorems for Semi-Discrete Wasserstein Distances. Bernoulli 2024, 30, 554–580. [Google Scholar] [CrossRef]
- Perez-Cruz, F. Kullback-Leibler Divergence Estimation of Continuous Distributions. In Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6–11 July 2008; pp. 1666–1670. [Google Scholar] [CrossRef]
- Ding, R.; Mullhaupt, A. Empirical Squared Hellinger Distance Estimator and Generalizations to a Family of α-Divergence Estimators. Entropy 2023, 25, 612. [Google Scholar] [CrossRef]
- Bakker, R.; Currie, B. The Dartmouth Database. Available online: http://soma.ece.mcmaster.ca/ipix/dartmouth/index.html (accessed on 27 September 2023).
- Laplace Transforms. In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ninth Dover Printing, Tenth GPO Printing ed.; Abramowitz, M.; Stegun, I.A. (Eds.) Dover: New York, NY, USA, 1964; pp. 1020–1030. [Google Scholar]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Jeffreys, H. Theory of Probability; International Series of Monographs on Physics, Clarendon Press: Oxford, UK, 1983. [Google Scholar]
- Cichocki, A.; Amari, S.I. Families of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities. Entropy 2010, 12, 1532–1568. [Google Scholar] [CrossRef]
- Bhattacharyya, A.K. On a Measure of Divergence between Two Statistical Populations Defined by Their Probability Distributions. Calcutta Math. Soc. 1943, 35, 99–109. [Google Scholar]
- Kailath, T. The Divergence and Bhattacharyya Distance Measures in Signal Selection. IEEE Trans. Commun. 1967, 15, 52–60. [Google Scholar] [CrossRef]
- Gradstheyn, I.; Ryzhik, I.M.; Jeffrey, A.; Zwillinger, D.; Gradštejn, I. Table of Integrals, Series and Products, 7th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Gentle, J. Computational Statistics, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Vondra, B.; Bonefačić, D. Mitigation of the Effects of Unknown Sea Clutter Statistics by Using Radial Basis Function Network. Radioengineering 2020, 29, 215–227. [Google Scholar] [CrossRef]
- Katalinić, M.; Parunov, J. Review of Climatic Conditions in the Adriatic Sea. In Proceedings of the 21st Symposium on Theory and Practice of Shipbuilding, In Memoriam Prof. Leopold Sorta (Sorta 2014), Krk, Hrvatska, 2–4 October 2014; pp. 555–562. [Google Scholar]
- Glasser, L.; Kohl, K.; Koutschan, C.; Moll, V.H.; Straub, A. The Integrals in Gradshteyn and Ryzhik. Part 22: Bessel-K functions. Sci. Ser. A Math. Sci. 2012, 22, 129–151. [Google Scholar]
- Conover, W.J. Practical Nonparametric Statistics, 3rd ed.; Number Applied Probability and Statistics Section in Wiley Series on Probability and Statistics; John Wiley & Sons, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Ljung, G.; Box, G. On a Measure of Lack of Fit in Time Series Models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Gustafsson, F.; Karlsson, R. Generating Dithering Noise for Maximum Likelihood Estimation from Quantized Data. Automatica 2013, 49, 554–560. [Google Scholar] [CrossRef]
- Haykin, S.; Bakker, R.; Currie, B.W. Uncovering Nonlinear Dynamics—The Case Study of Sea Clutter. Proc. IEEE 2002, 90, 860–881. [Google Scholar] [CrossRef]
- Gini, F.; Greco, M. Texture Modelling, Estimation and Validation Using Measured Sea Clutter Data. IEE Proc.-Radar Sonar Navig. 2002, 149, 115–124. [Google Scholar] [CrossRef]
- Robert, C.P.; Casella, G. Monte Carlo Statistical Methods; Springer: New York, NY, USA, 2004. [Google Scholar]
- Ramchandran, H.; Nair, A.S. SCILAB (a Free Software to MATLAB); S. Chand & Company Ltd.: Ram Nagar, New Delhi, India, 2012. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vondra, B. Semi-Empirical Approach to Evaluating Model Fit for Sea Clutter Returns: Focusing on Future Measurements in the Adriatic Sea. Entropy 2024, 26, 1069. https://doi.org/10.3390/e26121069
Vondra B. Semi-Empirical Approach to Evaluating Model Fit for Sea Clutter Returns: Focusing on Future Measurements in the Adriatic Sea. Entropy. 2024; 26(12):1069. https://doi.org/10.3390/e26121069
Chicago/Turabian StyleVondra, Bojan. 2024. "Semi-Empirical Approach to Evaluating Model Fit for Sea Clutter Returns: Focusing on Future Measurements in the Adriatic Sea" Entropy 26, no. 12: 1069. https://doi.org/10.3390/e26121069
APA StyleVondra, B. (2024). Semi-Empirical Approach to Evaluating Model Fit for Sea Clutter Returns: Focusing on Future Measurements in the Adriatic Sea. Entropy, 26(12), 1069. https://doi.org/10.3390/e26121069