Semantic Networks: Structure and Dynamics
<p>An illustration of the concept of clustering <span class="html-italic">C</span>, calculated on the gray node. In the left figure, every neighbor of the mentioned node is connected to each other; therefore, clustering coefficient is 1. In the middle picture, only two of the gray node neighbors’ are connected, yielding a clustering coefficient of 1/3; finally, in the last illustration none of the gray node’s neighbors are linked to each other, which yields a clustering coefficient of 0. From Wikipedia Commons.</p> "> Figure 2
<p>From regularity to randomness: note the changes in average path length and clustering coefficient as a function of the rewiring probability <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>C</mi> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </semantics> </math> for the family of randomly rewired graphs. For low rewiring probabilities the clustering is still close to its initial value, whereas the average path length has already decreased significantly. For high probabilities, the clustering has dropped to an order of <math display="inline"> <semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics> </math>. This figure illustrates the fact that small-world is not <span class="html-italic">a</span> network, but a family of networks.</p> "> Figure 3
<p>Cumulative degree distribution for a SF with <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>10000</mn> </mrow> </semantics> </math>, constructed according to the BA model. For each node entering the network, 3 new edges are placed. The horizontal axis is vertex degree <span class="html-italic">k</span> and the vertical axis is the cumulative probability distribution of degrees, <span class="html-italic">i.e.</span>, the fraction of vertices that have degree greater than or equal to <span class="html-italic">k</span>.</p> "> Figure 4
<p>The RB model yields a hierarchical network, that combines the scale-free property with a high degree of clustering. The starting point is a small cluster of five densely linked nodes; next, four replicas of this hypothetical module are generated. The four external nodes of the replicated clusters are connected to the central node of the old cluster, obtaining a large 25-node module. This replication and connection can be repeated recursively, thus obtaining networks of size 25, 125, <span class="html-italic">etc</span>.</p> "> Figure 5
<p>A network structure out of semantic features data. Left: each subject assigns semantic features to given nouns, and features build up a semantic vector. In the example, features are <span class="html-italic">is alive</span>, <span class="html-italic">has tail</span>, <span class="html-italic">is wild</span>, <span class="html-italic">can fly</span>, <span class="html-italic">is underwear</span>, <span class="html-italic">is long</span>, <span class="html-italic">is warm</span> and <span class="html-italic">has buttons</span>. The number in each cell reflects the number of participants who assigned that feature to the corresponding item. Right: cosine overlapping between each pair of vectors from the left matrix. This new similarity matrix can be suitably interpreted as a semantic network. Note that values in both matrices do not represent actual results, and have been put merely for illustrative purposes.</p> "> Figure 6
<p>Dorogovstev and Mendes’ scheme of the language network growth [<a href="#B76-entropy-12-01264" class="html-bibr">76</a>]: a new word is connected to some old one <span class="html-italic">i</span> with the probability proportional to its degree <math display="inline"> <semantics> <msub> <mi>k</mi> <mi>i</mi> </msub> </semantics> </math> (Barabási and Albert’s preferential attachment); in addition, at each increment of time, <math display="inline"> <semantics> <mrow> <mi>c</mi> <mi>t</mi> </mrow> </semantics> </math> new edges emerge between old words, where <span class="html-italic">c</span> is a constant coefficient that characterizes a particular network.</p> "> Figure 7
<p>Plots of the cumulative degree distribution in four networks. All of them have been converted to unweighted and undirected. (a) WordNet, hypernymy relationships; (b) Co-occurrence networks for variable window size, from the ACE corpus; (c) English Free Association Norms (USF-FA); (d) Roget’s thesaurus. Note that the plots are drawn in log-log scale. Only (a) and (b) display a power-law decay, whereas (c) and (d) do not follow a scale-free distribution. All of them, nonetheless, fit in the small-world definition.</p> "> Figure 8
<p>Directions and weights matter. Left: log-log plots of the cumulative degree distributions for psycholinguistic data in four languages (from top to bottom: USF, SFA-SV, SFA and GFA). Directions are symmetrized and weights are not taken into account. Right: log-log plots of the cumulative in-strength distribution for the same data without manipulation. Note that there exist striking differences between degree and strength distributions of psycholinguistic data. These differences are also evident in other descriptors, which suggests that comprehension about cognitive-linguistic processes demand attention to such details.</p> "> Figure 9
<p>The Collins and Quillians tree data structure provides a particularly economical system for representing knowledge about categories. The cognitive economy principle prevents the structure from having redundant information, thus features which belong to one level do not appear in any other. Despite some positive experimental results with humans, the structure is far too rigid to accommodate actual semantic knowledge.</p> "> Figure 10
<p>An illustration of the output of the PageRank algorithm. A link from an important web page is a better indicator of importance than a link from an unimportant web page. Under such a view, an important web page is one that receives many links from other important web pages. From Wikipedia Commons.</p> "> Figure 11
<p>Community analysis for a subset of USF-FA with <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>376</mn> </mrow> </semantics> </math> nodes. The modularity value for this analysis is <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>8630</mn> </mrow> </semantics> </math>. The partition has been obtained for this review using a combination of algorithms (Extremal Optimization [<a href="#B52-entropy-12-01264" class="html-bibr">52</a>], Fast Algorithm [<a href="#B53-entropy-12-01264" class="html-bibr">53</a>] and Tabu Search [<a href="#B49-entropy-12-01264" class="html-bibr">49</a>]) available at [<a href="#B56-entropy-12-01264" class="html-bibr">56</a>]</p> ">
Abstract
:1. Introduction to complex networks
1.1. Terminology in complex networks
1.2. Complex network descriptors
1.3. Network models
- Start with order: Start with a ring lattice with N nodes in which every node is connected to its first k neighbors ( on either side). In order to have a sparse but connected network at all times, consider .
- Randomize: Randomly rewire each edge of the lattice with probability p such that self-connections and duplicate edges are excluded. This process introduces long-range edges which connect nodes that otherwise would be part of different neighborhoods. By varying p one can closely monitor the transition between order (p=0) and randomness (p=1).
- Growth: Starting with a small number () of nodes, at every time step, we add a new node with m() edges that link the new node to m different nodes already present in the system.
- Preferential attachment: When choosing the nodes to which the new node connects, we assume that the probability ∏ that a new node will be connected to node i depends on the degree of node i, such that
1.4. The mesoscale level
- The study at the micro level attempts to understand the behavior of single nodes. Such level includes degree, clustering coefficient or betweenness and other parameters.
- Meso level points at group or community structure. At this level, it is interesting to focus on the interaction between nodes at short distances, or classification of nodes, as we shall see.
- Finally, macro level clarifies the general structure of a network. At this level, relevant parameters are average degree , degree distribution , average path length L, average clustering coefficient C, etc.
2. Building language networks
2.1. Text analysis: co-occurrence graphs
2.2. Dictionaries and Thesauri
2.3. Semantic features
2.4. Associative networks
3. Language networks: topology, function, evolution
4. The cognitive pole I: Language and conceptual development
5. The cognitive pole II: Cognitive-linguistic processes on language networks
5.1. Google and the mind
5.2. Clustering and switching dynamics
5.3. Encoding semantic similarity
6. Conclusions and perspectives
References
- Miller, G.A.; Beckwith, R.; Fellbaum, C.; Gross, D.; Miller, K.J. Introduction to wordnet: an on-line lexical database. Int. J. Lexico. 1990, 3, 235–244. [Google Scholar] [CrossRef]
- Roget, P. Roget’s Thesaurus of English Words and Phrases; TY Crowell co.: New York, NY, USA, 1911. [Google Scholar]
- WordNet: An electronic lexical database; Fellbaum, C. (Ed.) MIT press: Cambridge, MA, USA, 1998.
- Milgram, S. The small world problem. Psychol. Today 1967, 2, 61–67. [Google Scholar]
- Travers, J.; Milgram, S. An experimental study of the small world problem. Sociometry 1969, 32, 425–443. [Google Scholar] [CrossRef]
- Watts, D.; Strogatz, S. Collective dynamics of ’small-world’ networks. Nature 1998, 393, 440. [Google Scholar] [CrossRef] [PubMed]
- Ferrer i Cancho, R.; Solé, R.; Köhler, R. Patterns in syntactic dependency networks. Phys. Rev. E 2004, 69, 051915. [Google Scholar] [CrossRef] [PubMed]
- Ferrer i Cancho, R. Euclidean distance between syntactically linked words. Phys. Rev. E 2004, 70, 56135. [Google Scholar] [CrossRef] [PubMed]
- Solé, R.V.; Murtra, B.; Valverde, S.; Steels, L. Language Networks: their structure, function and evolution. Trends Cogn. Sci. 2006. cplx.20305. [Google Scholar]
- Ferrer i Cancho, R. Why do syntactic links not cross? Europhys. Lett. 2006, 76, 1228–1234. [Google Scholar] [CrossRef]
- Corominas-Murtra, B.; Valverde, S.; Solé, R.V. The ontogeny of scale-free syntax networks through language acquisition. Adv. Compl. Syst. 2009, 12, 371–392. [Google Scholar] [CrossRef]
- Corominas-Murtra, B.; Valverde, S.; Solé, R.V. Evolution of Communication and Language in Embodied Agents. Evol. Commun. Lang. Embodied Agent. 2010, 83–101. [Google Scholar]
- Kello, C.; Beltz, B. Scale-free networks in phonological and orthographic wordform lexicons. In Approaches to Phonological Complexity; Chitoran, I., Coup, C., Marsico, E., Pellegrino, F., Eds.; Mouton De Gruyter: Berlin, Germany, 2009; p. 171. [Google Scholar]
- Vitevitch, M. The clustering coefficient of phonological neighborhoods influences spoken word recognition. J. Acoust. Soc. Am. 2006, 120, 3252. [Google Scholar] [CrossRef]
- Erdös, P.; Rényi, A. On Random Graphs. Publ. Math. (Debrecen) 1959, 6, 290–297. [Google Scholar]
- Barabási, A.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509. [Google Scholar] [PubMed]
- Albert, R.; Barabási, A. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef]
- Newman, M.E.J. The structure and function of complex networks. SIAM Rev 2003, 45, 167–256. [Google Scholar] [CrossRef]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. Complex networks: structure and dynamics. Phys. Rep. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Chung, F.; Lu, L. Complex Graphs and Networks; American Mathematical Society: Providence, RI, USA, 2006. [Google Scholar]
- Newman, M.; Barabási, A.; Watts, D. The Structure and Dynamics of Networks; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Caldarelli, G. Scale-free Networks: Complex Webs in Nature and Technology; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Barrat, A.; Barthélemy, M.; Vespignani, A. Dynamical Processes on Complex Networks; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Dorogovtsev, S.; Goltsev, A.; Mendes, J. Critical phenomena in complex networks. Rev. Mod. Phys. 2008, 80, 1275–1335. [Google Scholar] [CrossRef]
- Cohen, R.; Havlin, S. Complex Networks: Structure, Robustness and Function; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Rozenfeld, H. Structure and Properties of Complex Networks: Models, Dynamics, Applications; VDM Verlag: Saarbrcken, Germany, 2010. [Google Scholar]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Freeman, L. A set of measures of centrality based upon betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Brandes, U. A Faster Algorithm for Betweenness Centrality. J. Math. Soc. 2001, 25, 163–177. [Google Scholar] [CrossRef]
- Bonacich, P. Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 1972, 2, 113–120. [Google Scholar] [CrossRef]
- Adamic, L. The small world web. Res. Adv. Tech. Digit. Libr. 1999, 852–852. [Google Scholar]
- Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank citation ranking: Bringing order to the web. Technical report. Stanford Digital Library Technologies Project: Standford, CA, USA, 1998. [Google Scholar]
- Newman, M. Assortative mixing in networks. Phys. Rev. Lett. 2002, 89, 208701. [Google Scholar] [CrossRef] [PubMed]
- Newman, M. Mixing patterns in networks. Phys. Rev. E 2003, 67, 26126. [Google Scholar] [CrossRef] [PubMed]
- Solé, R.V.; Valverde, S. Chapter: Information Theory of Complex Networks: On Evolution and Architectural Constraints. In Networks: Structure, Dynamics and Function; Lecture Notes in Physics; Springer-Verlag: Berlin, Germany, 2004; pp. 169–190. [Google Scholar]
- Read, R.; Wilson, R. An atlas of graphs; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Erdös, P.; Rényi, A. On the Evolution of Random Graphs. Publ. Math. Inst. Hung. Acad. Sci. 1960, 5, 17. [Google Scholar]
- Erdös, P.; Rényi, A. On the Evolution of Random Graphs. Bull. Inst. Int. Stat. 1961, 38, 343. [Google Scholar]
- Bollobás, B. Random Graphs, 2nd ed.; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Rapoport, A. Spread of Information through a Population with Socio- Structural Bias I. Assumption of Transitivity. Bull. Math. Biophys. 1953, 15, 523–533. [Google Scholar] [CrossRef]
- Rapoport, A. Spread of Information through a Population with Socio- Structural Bias II. Various Models with Partial Transitivity. Bull. Math. Biophys. 1953, 15, 533–546. [Google Scholar] [CrossRef]
- Rapoport, A. Spread of Information through a Population with Socio- Structural Bias III. Suggested Experimental Procedures. Bull. Math. Biophys. 1954, 16, 75–81. [Google Scholar] [CrossRef]
- Rapoport, A.; Horvath, W. A Study of a Large Sociogram. Behav. Sci. 1961, 6, 79–91. [Google Scholar] [CrossRef]
- Watts, D.J. Small Worlds: The Dynamics of Networks between Order and Randomness; Princeton University: Princeton, NJ, USA, 1999. [Google Scholar]
- Klemm, K.; Eguiluz, V. Highly clustered scale-free networks. Phys. Rev. E 2002, 65, 36123. [Google Scholar] [CrossRef] [PubMed]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed]
- Guimerà, R.; Danon, L.; Díaz-Guilera, A.; Giralt, F.; Arenas, A. Self-similar community structure in a network of human interactions. Phys. Rev. E 2003, 68, 065103. [Google Scholar] [CrossRef] [PubMed]
- Gleiser, P.; Danon, L. Community structure in jazz. Adv. Compl. Syst. 2003, 6, 565–573. [Google Scholar] [CrossRef]
- Arenas, A.; Fernandez, A.; Gomez, S. Analysis of the structure of complex networks at different resolution levels. New J. Phys. 2008, 10, 053039. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [PubMed]
- Gómez, S.; Jensen, P.; Arenas, A. Analsys of community structure in networks of correlated data. Phys. Rev. E 2009, 80, 016114. [Google Scholar] [CrossRef] [PubMed]
- Duch, J.; Arenas, A. Community detection in complex networks using extremal optimization. Phys. Rev. E 2005, 72, 027104. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.E.J. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Arenas, A.; Duch, J.; Fernández, A.; Gómez, S. Size reduction of complex networks preserving modularity. New J. Phys. 2007, 9, 176. [Google Scholar] [CrossRef]
- Danon, L.; Duch, J.; Arenas, A.; Díaz-Guilera, A. Comparing community structure identification. J. Stat. Mech. 2005, P09008. [Google Scholar] [CrossRef]
- Sergio Gómez homepage. Available online: http://deim.urv.cat/ sgomez/radatools.php (accessed on 15 April 2010).
- Arenas, A.; Díaz-Guilera, A.; Pérez-Vicente, C. Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 2006, 96, 114102. [Google Scholar] [CrossRef] [PubMed]
- Arenas, A.; Fernández, A.; Gómez, S. A complex network approach to the determination of functional groups in the neural system of C. Elegans. Lect. Notes Comput. Sci. 2008, 5151, 9–18. [Google Scholar]
- Mehler, A. Chapter: Large Text Networks as an Object of Corpus Linguistic Studies. In Corpus Linguistics. An International Handbook; de Gruyter: Berlin, Germany/New York, NY, USA, 2007. [Google Scholar]
- Sinclair, J. Corpus, Concordance, Collocation; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Stubbs, M. Words and Phrases: Corpus Studies of Lexical Semantics; Blackwell Pub.: Cambridge, MA, USA, 2001. [Google Scholar]
- Stubbs, M. Text and Corpus Analysis; Blackwell Pub.: Cambridge, MA, USA, 1996. [Google Scholar]
- Halliday, M. Lexis as a linguistic level. In memory of JR Firth; 1966; pp. 148–162. [Google Scholar]
- Antiqueira, L.; Nunes, M.; Oliveira, O.; Costa, L. Strong correlations between text quality and complex networks features. Phys. A 2006, 373, 811–820. [Google Scholar] [CrossRef]
- Ferrer i Cancho, R.; Solé, R. The small-world of human language. Proc. R. Soc. Lond., B, Biol. Sci. 2001, 268, 2261–2265. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.; Peters, P. The Australian corpus project. In Corpus linguistics, hard and soft, Proceedings of the Eighth International Conference on English Language Research on Computerized Corpora; Editions Rodopi: Atlanta, GA, USA, 1988; p. 103. [Google Scholar]
- Sigman, M.; Cecchi, G. Global organization of the WordNet lexicon. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1742–1747. [Google Scholar] [CrossRef] [PubMed]
- McRae, K.; Cree, G.; Seidenberg, M.; McNorgan, C. Semantic feature production norms for a large set of living and nonliving things. Behav. Res. Meth. 2005, 37, 547–559. [Google Scholar] [CrossRef]
- Nelson, D.L.; McEvoy, C.L.; Schreiber, T.A. The University of South Florida word association, rhyme, and word fragment norms. Behav. Res. Meth. 1998, 36, 402–407. [Google Scholar] [CrossRef]
- Callejas, A.; Correa, A.; Lupiáñez, J.; Tudela, P. Normas asociativas intracategoriales para 612 palabras de seis categorías semánticas en español. Psicológica 2003, 24, 185–214. [Google Scholar]
- Fernández, A.; Díez, E.; Alonso, M.; Beato, M. Free-association norms for the Spanish names of the Snodgrass and Vanderwart pictures. Behav. Res. Meth. 2004, 36, 577–583. [Google Scholar] [CrossRef]
- Melinger, A.; Weber, A. Database of Noun Associations for German. Available online: http://www.coli.uni-saarland.de/projects/nag/ (accessed on 10 April 2010).
- Ferrand, L.; Alario, F.X. Normes d’associations verbales pour 366 noms d’objets concrets. L’Année Psychol. 1998, 98, 531–552. [Google Scholar] [CrossRef]
- Motter, A.E.; de Moura, A.P.S.; Lai, Y.C.; Dasgupta, P. Topology of the conceptual network of language. Phys. Rev. E 2002, 65, e065102. [Google Scholar] [CrossRef] [PubMed]
- ftp://ibiblio.org/pub/docs/books/gutenberg/etext02/mthes10.zip (accessed on 27 December 2009).
- Dorogovtsev, S.; Mendes, J. Language as an evolving word web. Proc. R. Soc. Lond., B, Biol. Sci. 2001, 268, 2603–2606. [Google Scholar] [CrossRef] [PubMed]
- Snodgrass, J.; Vanderwart, M. A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. J. Exp. Psychol. Hum. Learn. 1980, 6, 174–215. [Google Scholar] [CrossRef] [PubMed]
- Ferrer i Cancho, R. Zipf’s law from a communicative phase transition. Eur. Phys. J. B 2005, 47, 449–457. [Google Scholar] [CrossRef]
- Ferrer i Cancho, R. When language breaks into pieces. A conflict between communication through isolated signals and language. BioSystems 2006, 84, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Zipf, H. Human behaviour and the Principle of Least Effort: An Introduction to Human Ecology; Addison Wesley: Cambridge, MA, USA, 1949. [Google Scholar]
- Shannon, C.; Weaver, W. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 623. [Google Scholar] [CrossRef]
- Ferrer i Cancho, R.; Solé, R. Least effort and the origins of scaling in human language. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 788. [Google Scholar] [CrossRef] [PubMed]
- Steyvers, M.; Tenenbaum, J.B. The largescale structure of semantic networks: statistical analyses and a model of semantic growth. Cog. Sci. 2005, 29, 41–78. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.M.; Quillian, M.R. Retrieval time from semantic memory. J. Verbal Learn. Verbal Beh. 1969, 8, 240–247. [Google Scholar] [CrossRef]
- Collins, A.; Loftus, E. A spreading activation theory of semantic memory. Psychol. Rev. 1975, 82, 407–428. [Google Scholar] [CrossRef]
- Griffiths, T.; Steyvers, M.; Firl, A. Google and the mind: Predicting fluency with PageRank. Psychol. Sci. 2007, 18, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Arenas, A.; Cabrales, A.; Danon, L.; Díaz-Guilera, A.; Guimerà, R.; Vega-Redondo, F. Optimal information transmission in organizations: search and congestion. Rev. Econ. Des. 2010, 14, 75–93. [Google Scholar] [CrossRef]
- Danon, L.; Arenas, A.; Díaz-Guilera, A. Impact of community structure on information transfer. Phys. Rev. E 2008, 77, 36103. [Google Scholar] [CrossRef] [PubMed]
- Goñi, J.; Martincorena, I.; Corominas-Murtra, B.; Arrondo, G.; Ardanza-Trevijano, S.; Villoslada, P. Switcher-random-walks: a cognitive inspired mechanism for network exploration. Arxiv 2009, 0903.4132. [Google Scholar] [CrossRef]
- Troyer, A.; Moscovitch, M.; Winocur, G. Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsycholgy 1997, 11, 138–146. [Google Scholar] [CrossRef]
- Bousfield, W.; Sedgewick, C. An analysis of sequences of restricted associative responses. J. Gen. Psychol. 1944, 30, 149–165. [Google Scholar] [CrossRef]
- Borge-Holthoefer, J.; Arenas, A. Navigating word association norms to extract semantic information. In Proceedings of the 31st Annual Conference of the Cognitive Science Society, Amsterdam, The Netherlands; 2009. [Google Scholar]
- Borge-Holthoefer, J.; Arenas, A. Categorizing words through semantic memory navigation. Eur. Phys. J. B 2010, 74, 265–270. [Google Scholar] [CrossRef]
- Landauer, T.; Dumais, S. A solution to Plato’s problem: the Latent Semantic Analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 1997, 104, 211–240. [Google Scholar] [CrossRef]
- Landauer, T.; McNamara, D.; Dennis, S.; Kintsch, W. Handbook of Latent Semantic Analysis; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2007. [Google Scholar]
- Steyvers, M.; Shiffrin, R.M.; Nelson, D.L. Word association spaces for predicting semantic similarity effects in episodic memory. In Experimental cognitive psychology and its applications; Healy, A.F., Ed.; American Psychological Association: Washington, DC, USA, 2004; pp. 237–249. [Google Scholar]
- Steels, L. Language as a complex adaptive system. Lect. Notes Comput. Sci. 2000, 1917, 17–28. [Google Scholar]
- Steels, L. The emergence and evolution of linguistic structure: from lexical to grammatical communication systems. Conn. Sci. 2005, 17, 213–230. [Google Scholar] [CrossRef]
- Baronchelli, A.; Felici, M.; Loreto, V.; Caglioti, E.; Steels, L. Sharp transition towards shared vocabularies in multi-agent systems. J. Stat. Mech. 2006, 6, P06014. [Google Scholar] [CrossRef]
- Sporns, O.; Kötter, R. Motifs in brain networks. PLoS Biol. 2004, 2, e369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sporns, O.; Chialvo, D.; Kaiser, M.; Hilgetag, C. Organization, development and function of complex brain networks. Trends Cogn. Sci. 2004, 8, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zemanová, L.; Zamora-López, G.; Hilgetag, C.; Kurths, J. Hierarchical Organization Unveiled by Functional Connectivity in Complex Brain Networks. Phys. Rev. Lett. 2006, 97, 238103. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zemanová, L.; Zamora-López, G.G.; Hilgetag, C.; Kurths, J. Structure–function relationship in complex brain networks expressed by hierarchical synchronization. New J. Phys. 2007, 9, 178. [Google Scholar] [CrossRef]
- Friederici, A. Pathways to language: fiber tracts in the human brain. Trends Cogn. Sci. 2009, 13, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Hillis, A.; Caramazza, A. Category-specific naming and comprehension impairment: A double dissociation. Brain 1991, 114, 2081–2094. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Wiggs, C.; Ungerleider, L.; Haxby, J. Neural correlates of category-specific knowledge. Nature 1996, 379, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Polyn, S.; Natu, V.; Cohen, J.; Norman, K. Category-specific cortical activity precedes retrieval during memory search. Science 2005, 310, 1963. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.; Shinkareva, S.; Carlson, A.; Chang, K.; Malave, V.; Mason, R.; Just, M. Predicting human brain activity associated with the meanings of nouns. Science 2008, 320, 1191. [Google Scholar] [CrossRef] [PubMed]
- Binder, J.; Desai, R.; Graves, W.; Conant, L. Where is the semantic system? Cereb Cortex 2009, 120, 2767–2796. [Google Scholar] [CrossRef] [PubMed]
N | C | L | ||
Moby Thesaurus | 30244 | 59.9 | 0.53 | 3.16 |
Randomized MT | 30244 | 59.9 | 0.002 | 2.5 |
N | C | L | D | ||
USF-FA | 5018 | 22 | 0.1928 | 3.04 | 5 |
SFA-SV | 7759 | 3.05 | 0.0867 | 3.71 | 5 |
SFA | 2901 | 4.9 | 0.1487 | 4.50 | 8 |
GFA-SV | 3632 | 2.05 | 0.034 | 4.57 | 8 |
Graph | Source Network | Vertex | Edge | Orient. | N | L | C | Reference | |
---|---|---|---|---|---|---|---|---|---|
thesaurus graph | Moby’s thesaurus | word | sense relation | undir. | 30,244 | 59.9 | 3.16 | 0.53 | [74] |
collocation graph | BNC corpus | word | collocation | undir. | 460,902 | 70.13 | 2.67 | 0.44 | [65] |
co-occurrence graph | BNC corpus | word | co-occurrence | undir. | 478,773 | 74.2 | 2.63 | 0,69 | [65] |
thesaurus graph | Roget’s thesaurus | word | sense relation | undir. | 29,381 | S. (3.3) | 5.60 | 0.87 | [83] |
concept graph | WordNet | word | sense relation | undir. | 122,005 | 3.3 | 10.56 | 0.03 | [83] |
association graph | free assoc. data | word | association | undir. | 5,018 | 22.0 | 3.04 | 0.19 | [83] |
association graph | free assoc. data | word | association | dir. | 5,018 | 12.7 | 4.27 | 0.19 | [83] |
N | C | L | D | γ | ||
USF-FA | 5018 | 23.5 | 0.1928 | 3.04 | 5 | 3.01 |
Synthetic USF | 5018 | 22 | 0.174 | 3.00(.012) | 5(.000) | 2.95(.054) |
Descriptor | FA | FP | LSA | WAS | RIM |
N | 376 | 376 | 376 | 376 | 376 |
0.26 | 13.43 | 39.60 | 10.29 | 15.62 | |
L | 4.41 | 1.68 | 0.02 | 2.00 | 1.77 |
D | 9 | 3 | 2 | 4 | 3 |
C | 0.192 | 0.625 | 0.961 | 0.492 | 0.584 |
r | 0.325 | 0.295 | 0.125 | 0.303 | 0.305 |
TUBA | |||
FP | LSA | WAS | RIM |
trombone | clarinet | bathtub | trombone |
trumpet | violin | faucet | saxophone |
drum | flute | sink | trumpet |
cello | guitar | bucket | flute |
clarinet | trombone | bridge | clarinet |
saxophone | fork | submarine | cello |
flute | trumpet | drain | violin |
harp | cake | raft | harp |
banjo | drum | tap | banjo |
piano | piano | dishwasher | stereo |
ERROR | 4.83 | 11 | 2.5 |
ROOSTER | |||
chicken | cat | chicken | chicken |
goose | gate | crow | turkey |
pigeon | donkey | skillet | crow |
sparrow | barn | rice | robin |
penguin | turnip | spinach | sparrow |
pelican | owl | bowl | bluejay |
bluejay | pig | beans | pigeon |
dove | fence | robin | pelican |
hawk | lion | tomato | goose |
turkey | strawberry | sparrow | hawk |
ERROR | 11 | 8.5 | 2.87 |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.
Share and Cite
Borge-Holthoefer, J.; Arenas, A. Semantic Networks: Structure and Dynamics. Entropy 2010, 12, 1264-1302. https://doi.org/10.3390/e12051264
Borge-Holthoefer J, Arenas A. Semantic Networks: Structure and Dynamics. Entropy. 2010; 12(5):1264-1302. https://doi.org/10.3390/e12051264
Chicago/Turabian StyleBorge-Holthoefer, Javier, and Alex Arenas. 2010. "Semantic Networks: Structure and Dynamics" Entropy 12, no. 5: 1264-1302. https://doi.org/10.3390/e12051264
APA StyleBorge-Holthoefer, J., & Arenas, A. (2010). Semantic Networks: Structure and Dynamics. Entropy, 12(5), 1264-1302. https://doi.org/10.3390/e12051264