Entropy and Phase Coexistence in Clusters: Metals vs. Nonmetals
<p>Configurational excitation of a cluster of 13 atoms bound by short-range pair interactions.</p> "> Figure 2
<p>Structures of the lowest configurationally stable states for the 13-particle Lennard-Jones cluster at zero temperature [<a href="#B38-entropy-12-01303" class="html-bibr">38</a>].</p> "> Figure 3
<p>The excitation energies and barrier energies for the lowest configuration excitations of the 13-atom Lennard-Jones cluster, according to [<a href="#B38-entropy-12-01303" class="html-bibr">38</a>].</p> "> Figure 4
<p>A schematic representation of the single-particle excitations of a 13-atom cluster with short-range interparticle forces. When this schema is converted into an energy space surface structure, positions 1 and 1’ and also the positions 2 and 2’ are joined, and the cluster surface consists of 20 equilateral triangles.</p> "> Figure 5
<p>(a) The dependence on the excitation energy of the anharmonic parameter (3)for an isolated Lennard-Jones cluster of 13 atoms [<a href="#B40-entropy-12-01303" class="html-bibr">40</a>,<a href="#B41-entropy-12-01303" class="html-bibr">41</a>] obtained from computer simulation [<a href="#B6-entropy-12-01303" class="html-bibr">6</a>]; (b), the temperature dependence of the anharmonic parameter (3) for the solid and liquid states [<a href="#B2-entropy-12-01303" class="html-bibr">2</a>,<a href="#B43-entropy-12-01303" class="html-bibr">43</a>] obtained on the basis of the results of computer simulation [<a href="#B6-entropy-12-01303" class="html-bibr">6</a>].</p> "> Figure 6
<p>The square of the length of fluctuations of the bond length defined by formula (<a href="#FD4-entropy-12-01303" class="html-disp-formula">4</a>) averaged over a long period for the 13-atom Lennard-Jones “argon" cluster [<a href="#B6-entropy-12-01303" class="html-bibr">6</a>].</p> "> Figure 7
<p>Evolution in time of the total potential energy of cluster atoms with short-time fluctuations averaged (a), for the 13-atom Lennard-Jones cluster under isothermal conditions [<a href="#B7-entropy-12-01303" class="html-bibr">7</a>] (b) and under adiabatic conditions [<a href="#B8-entropy-12-01303" class="html-bibr">8</a>] at the excitation energy of 10.8D (the melting point, <span class="html-italic">i.e.</span>, the point of equal chemical potentials, corresponds to the excitation energy of 13.8D) (c). The data (b) and (c) results from computer simulations, time is measured in arbitrary units.</p> "> Figure 8
<p>The entropy jump at melting of the 13-atom Lennard-Jones cluster [<a href="#B22-entropy-12-01303" class="html-bibr">22</a>,<a href="#B23-entropy-12-01303" class="html-bibr">23</a>]. Closed circles are obtained from the results of computer simulation of the isolated 13-atom Lennard-Jones cluster [<a href="#B6-entropy-12-01303" class="html-bibr">6</a>], and open circles correspond to the isothermal 13-atom Lennard-Jones cluster [<a href="#B7-entropy-12-01303" class="html-bibr">7</a>].</p> "> Figure 9
<p>Schematic representation of the potential energy surface for configurational excitation of a dielectric cluster (a) and for a metal cluster (b) with its many intersecting PES’s.</p> "> Figure 10
<p>The numbers of isomers for metal clusters of 13 atoms as functions of the excitation energy–in effect, the density of configurational states. a) <math display="inline"> <mrow> <mi>N</mi> <msub> <mi>i</mi> <mn>13</mn> </msub> </mrow> </math>, b) <math display="inline"> <mrow> <mi>A</mi> <msub> <mi>g</mi> <mn>13</mn> </msub> </mrow> </math>, c) <math display="inline"> <mrow> <mi>A</mi> <msub> <mi>u</mi> <mn>13</mn> </msub> </mrow> </math> [<a href="#B54-entropy-12-01303" class="html-bibr">54</a>].</p> "> Figure 11
<p>The number of configurational states or isomers for the 13-atom Lennard-Jones cluster..</p> "> Figure 12
<p>The the root mean square of the bond length fluctuation for the cluster <math display="inline"> <mrow> <mi>A</mi> <msub> <mi>g</mi> <mn>13</mn> </msub> </mrow> </math> [<a href="#B54-entropy-12-01303" class="html-bibr">54</a>]. 1 - the solid state, 2 - the melting range, 3 - the liquid cluster state.</p> "> Figure 13
<p>The caloric curve for the <math display="inline"> <mrow> <mi>A</mi> <msub> <mi>g</mi> <mn>13</mn> </msub> </mrow> </math> cluster [<a href="#B54-entropy-12-01303" class="html-bibr">54</a>]. a - the solid state, b - the melting range, c - the liquid cluster state.</p> ">
Abstract
:1. Introduction
2. Dielectric Cluster Behavior
3. The Phase Transition in Metal Clusters
3.1. Entropy of Melting for Small Metal Clusters
Bulk | |||||
---|---|---|---|---|---|
Ar | 0.068 | 83.7 | 0.106 | 0.0123 | 18 |
Ni | 4.13 | 1728 | 0.036 | 0.181 | 4.4 |
Cu | 3.40 | 1358 | 0.034 | 0.138 | 4.1 |
Ag | 2.87 | 1235 | 0.037 | 0.120 | 4.2 |
Au | 3.65 | 1337 | 0.032 | 0.130 | 3.6 |
Cluster | |||
---|---|---|---|
44.11 | 27.87 | 41.96 | |
0.73 | 0.66 | 0.11 | |
1.6 | 2.4 | 0.26 | |
1.0 | 1.1 | 0.4 | |
1.9 | 0.52 | 0.46 | |
860 | 820 | 440 | |
9.8 | 10.6 | 6.1 | |
3.1 | 4.3 | 3.8 | |
13 | 15 | 10 | |
, % | 24 | 29 | 38 |
3.2. Phase Coexistence in Small Metal Clusters
4. Conclusions
References
- Berry, R.S. Theory of Atomic and Molecular Clusters; Jellinek, J., Ed.; Springer: Berlin, Germany, 1999; pp. 1–26. [Google Scholar]
- Smirnov, B.M.; Berry, R.S. Phase Transitions of Simple Systems; Springer: Heidelberg, Germany, 2007. [Google Scholar]
- Briant, C.L.; Burton, J.J. Molecular dynamics study of the structure and thermodynamic properties of argon microclusters. J. Chem. Phys. 1975, 63, 2045–2058. [Google Scholar] [CrossRef]
- Etters, R.D.; Kaelberer, J.B. Thermodynamic properties of small aggregates of rare-gas atoms. Phys. Rev. A 1975, 11, 1068–1079. [Google Scholar] [CrossRef]
- Etters, R.D.; Kaelberer, J.B. On the character of the melting transition in small atomic aggregates. J. Chem. Phys. 1977, 66, 5112–5116. [Google Scholar] [CrossRef]
- Jellinek, J.; Beck, T.L.; Berry, R.S. Solid-liquid phase changes in simulated isoenergetic Ar13. J. Chem. Phys. 1986, 84, 2783–2794. [Google Scholar] [CrossRef]
- Davis, H.L.; Jellinek, J.; Berry, R.S. Melting and freezing in isothermal Ar13. J. Chem. Phys. 1987, 86, 6456–6469. [Google Scholar] [CrossRef]
- Beck, T.L.; Jellinek, J.; Berry, R.S. Rare gas clusters: Solids, slush and magic numbers. J. Chem. Phys. 1987, 87, 545–554. [Google Scholar] [CrossRef]
- Berry, R.S.; Beck, T.L.; Davis, H.L.; Jellinek, J. Solid-liquid phase behavior in microclusters. Adv. Chem. Phys. 1988, 90, 75–138. [Google Scholar]
- Natanson, G.; Amar, F.; Berry, R.S. Melting and surface tension in microclusters. J. Chem. Phys. 1983, 78, 399–408. [Google Scholar] [CrossRef]
- Berry, R.S.; Smirnov, B.M. Two-state approximation for aggregate states of clusters. J. Chem. Phys. 2001, 114, 6816–6823. [Google Scholar] [CrossRef]
- Berry, R.S. Potential surfaces and dynamics: What clusters tell us. Chem. Rev. 1993, 93, 2379–2394. [Google Scholar] [CrossRef]
- Kunz, R.E.; Berry, R.S. Multiple phase coexistence in finite systems. Phys. Rev. E 1994, 49, 1895–1908. [Google Scholar] [CrossRef]
- Schmidt, M.; Kusche, R.; Kronmller, W.; von Issendorff, B; Haberland, H. Experimental determination of the melting point and heat capacity for a free cluster of 139 sodium atoms. Phys. Rev. Lett. 1997, 79, 99–102. [Google Scholar] [CrossRef]
- Schmidt, M.; Hippler, T.; Donges, J.; Kronmller, W.; von Issendorf, B.; Haberland, H. Caloric curve across the liquid-to-gas change for sodium clusters. Phys. Rev. Lett. 2001, 87, 203402. [Google Scholar] [CrossRef] [PubMed]
- Breaux, G.A.; Benirschke, R.C.; Jarrold, M.F. Melting, freezing, sublimation, and phase coexistence in sodium chloride nanocrystals. J. Chem. Phys. 2004, 121, 6502–6507. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Donges, J.; Hippler, Th.; Haberland, H. Influence of energy and entropy on the melting of sodium clusters. Phys. Rev. Lett. 2003, 90, 103401. [Google Scholar] [CrossRef] [PubMed]
- Eryrek, M.; Gven, M.H. Negative heat capacity of Ar55. Physica A 2007, 377, 514–522. [Google Scholar] [CrossRef]
- Berry, R.S.; Smirnov, B.M. Entropy behavior in cluster melting. J. Chem. Phys. 2009, 130, 064302. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.P. Shells of atoms. Physics Repts. 1996, 273, 199–242. [Google Scholar] [CrossRef]
- Reiss, H.; Mirabel, P; Whetten, R.L. Capillarity theory for the “Coexistence” of liquid and solid clusters. J. Phys. Chem. 1988, 92, 7241–7246. [Google Scholar]
- Berry, R.S.; Smirnov, B.M. Observability of coexisting phases of clusters. Int. J. Mass Spectrometry 2009, 280, 204–208. [Google Scholar] [CrossRef]
- Berry, R.S.; Smirnov, B.M. Phase transitions in clusters. Fizika Nizkikh Temperatur 2009, 35, 339–349. [Google Scholar] [CrossRef]
- Lennard-Jones, J.E. On the determination of molecular fields. II. From the equation of state of a gas. Proc. Roy. Soc. A 1924, 106, 463–477. [Google Scholar] [CrossRef]
- Lennard-Jones, J.E.; Ingham, A.E. On the calculation of certain crystal potential constants, and on the cubic crystal of least potential energy. Proc. Roy. Soc. A 1925, 107, 636–653. [Google Scholar] [CrossRef]
- Hoare, M.R.; Pal, P. Physical cluster mechanics: Statics and energy surfaces for monatomic systems. Adv. Phys. 1971, 20, 161–196. [Google Scholar] [CrossRef]
- Hoare, M.R.; Pal, P. Physical cluster mechanics: Statistical thermodynamics and nucleation theory for monatomic systems. Adv. Phys. 1975, 24, 645–678. [Google Scholar] [CrossRef]
- Hoare, M.R. Structure and dynamics of simple microclusters. Adv. Chem. Phys. 1979, 40, 49–135. [Google Scholar]
- Stillinger, F.H.; Weber, T.A. Hidden structure in liquids. Phys. Rev. A 1982, 25, 978–989. [Google Scholar] [CrossRef]
- Stillinger, F.H.; Weber, T.A. Dynamics of structural transitions in liquids. Phys. Rev. A 1983, 28, 2408–2416. [Google Scholar] [CrossRef]
- Corti, D.S.; Debenedetti, P.G.; Sastry, S.; Stillinger, F.H. Constraints, metastability, and inherent structures in liquids. Phys. Rev. E 1977, 55, 5522–5534. [Google Scholar] [CrossRef]
- Li, Z.; Scheraga, H.A. Monte carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Nat’l. Acad. Sci. USA 1987, 84, 6611–6615. [Google Scholar] [CrossRef]
- Wales, D.J.; Doye, J.P.K. Global optimization by Basin-Hopping and the lowest energy structures of Lennard-Jones Clusters containing up to 110 atoms. J. Phys. Chem. A 1997, 101, 5111–5116. [Google Scholar] [CrossRef]
- Wales, D.J. Energy Landscapes; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Vekhter, B.; Ball, K.D.; Rose, J.; Berry, R.S. Vibrational relaxation of clusters: Relation to potential surface topography. J. Chem. Phys. 1997, 106, 4644–4650. [Google Scholar] [CrossRef]
- Wales, D.J.; Doye, J.P.K.; Miller, M.A.; Mortenson, P.N.; Walsh, T.R. Energy landscapes from clusters to biomolecules. Adv. Chem. Phys. 2000, 115, 1–111. [Google Scholar]
- Lu, J.; Zhang, C.; Berry, R.S. Kinetics of model energy landscapes: An approach to complex systems. Phys. Chem. Chem. Phys. 2005, 7, 3443–3456. [Google Scholar] [CrossRef] [PubMed]
- Wales, D.J.; Berry, R.S. Melting and freezing of small argon clusters. J. Chem. Phys. 1990, 92, 4283–4295. [Google Scholar] [CrossRef]
- Bixon, M.; Jortner, J. Energetic and thermodynamic size effects in molecular clusters. J. Chem. Phys. 1989, 91, 1631–1642. [Google Scholar] [CrossRef]
- Smirnov, B.M. Melting of clusters with pair interaction of atoms. Phys. Uspekhi 1994, 37, 1079–1096. [Google Scholar] [CrossRef]
- Smirnov, B.M. Surface melting of clusters. Phys. Scripta 1994, 50, 427–431. [Google Scholar] [CrossRef]
- Berry, R.S.; Jellinek, J.; Natanson, G. Melting of clusters and melting. Phys. Rev. A 1984, 30, 919–931. [Google Scholar] [CrossRef]
- Berry, R.S.; Smirnov, B.M. Phase transitions and adjacent phenomena in simple atomic systems. Phys. Usp. 2005, 48, 345–388. [Google Scholar] [CrossRef]
- Lindemann, F.A. ber die Berechnung molekularer Eigenfrequenzen. Phys. Z. 1910, 11, 609–612. [Google Scholar]
- Zhou, Y.; Karplus, M.; Ball, K.D.; Berry, R.S. The distance fluctuation criterion for melting: Comparison of square-well and Morse potential models for clusters and homopolymers. J. Chem. Phys. 2002, 116, 2323–2329. [Google Scholar] [CrossRef]
- Smirnov, B.M. Scaling method in atomic and molecular physics. Phys. Usp. 2001, 44, 1229–1253. [Google Scholar] [CrossRef]
- Smirnov, B.M. Principles of Statistical Physics; Wiley: Berlin, Germany, 2006. [Google Scholar]
- Labastie, P.; Whetten, R.L. Statistical thermodynamics of the cluster solid-liquid transition. Phys. Rev. Lett. 1990, 65, 1567–1570. [Google Scholar] [CrossRef] [PubMed]
- Braier, P.A.; Berry, R.S.; Wales, D.J. How the range of pair interactions governs features of multidimensional potentials. J. Chem. Phys. 1990, 93, 8745–8756. [Google Scholar] [CrossRef]
- Cheng, H.-P.; Berry, R.S. Surface melting and surface diffusion on clusters. Mat. Res. Soc. Symp. Proc. 1991, 206, 241–252. [Google Scholar] [CrossRef]
- Cheng, H.-P.; Berry, R.S. Surface melting of clusters and implications for bulk matter. Phys. Rev. A 1992, 45, 7969–7980. [Google Scholar] [CrossRef] [PubMed]
- Kunz, R.E.; Berry, R.S. Coexistence of multiple phases in finite systems. Phys. Rev. Lett. 1993, 71, 3987–3990. [Google Scholar] [CrossRef] [PubMed]
- Doye, J.P.K.; Wales, D.J. Calculation of thermodynamic properties of small Lennard-Jones clusters incorporating anharmonicity. J. Chem. Phys. 1995, 102, 9659–9572. [Google Scholar] [CrossRef]
- Arslan, H.; Güven, M.H. Melting dynamics and isomer distributions of small metal clusters. New J. Phys. 2005, 7, 60. [Google Scholar] [CrossRef]
- Sutton, A.P.; Chen, J. Long-range Finnis-Sinclair potentials. Phil. Mag. Lett. 1990, 61, 139–146. [Google Scholar] [CrossRef]
- Arslan, H.; Güven, M.H. Melting of AuN (N=12, 13, 14) Microclusters. Acta Phys. Slovac. 2006, 56, 511–520. [Google Scholar]
- Yildirim, E.K.; Atis, M.; Guvenc, Z.B. Molecular dynamics simulation of melting behaviour of small gold clusters: AuN (N-12-14). Phys. Scripta 2007, 75, 111–118. [Google Scholar] [CrossRef]
- Sebetci, A; Guvenc, Z.B. Molecular dynamics simulation of the melting behaviour of 12-, 13-, 14-atom platinum clusters. Model. Simul. Mater. Sci. Eng. 2004, 12, 1131–1138. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.
Share and Cite
Berry, R.S.; Smirnov, B.M. Entropy and Phase Coexistence in Clusters: Metals vs. Nonmetals. Entropy 2010, 12, 1303-1324. https://doi.org/10.3390/e12051303
Berry RS, Smirnov BM. Entropy and Phase Coexistence in Clusters: Metals vs. Nonmetals. Entropy. 2010; 12(5):1303-1324. https://doi.org/10.3390/e12051303
Chicago/Turabian StyleBerry, Richard Stephen, and Boris Michailovich Smirnov. 2010. "Entropy and Phase Coexistence in Clusters: Metals vs. Nonmetals" Entropy 12, no. 5: 1303-1324. https://doi.org/10.3390/e12051303
APA StyleBerry, R. S., & Smirnov, B. M. (2010). Entropy and Phase Coexistence in Clusters: Metals vs. Nonmetals. Entropy, 12(5), 1303-1324. https://doi.org/10.3390/e12051303