Thermodynamics of Quantum Feedback Cooling
<p>Sketch of the four steps of the spin cooling algorithm. The polarization bias of the marginals is illustrated by means of their effective “spin temperatures”, indicated with thermometers, and the correlations and residual coherence are depicted as shaded yellow areas. First, <math display="inline"> <mi mathvariant="sans-serif">S</mi> </math> and <math display="inline"> <mi mathvariant="sans-serif">A</mi> </math> are initialized in an uncorrelated state with polarization biases <math display="inline"> <mrow> <msub> <mi>ϵ</mi> <mi mathvariant="sans-serif">S</mi> </msub> <mo><</mo> <msub> <mi>ϵ</mi> <mi mathvariant="sans-serif">A</mi> </msub> </mrow> </math>. The measurement unitary <math display="inline"> <msub> <mover accent="true"> <mi>U</mi> <mo stretchy="false">^</mo> </mover> <mtext>m</mtext> </msub> </math> correlates the two parts, yielding marginals with biases <math display="inline"> <mrow> <msub> <mi>ϵ</mi> <mi mathvariant="sans-serif">S</mi> </msub> <mo form="prefix">cos</mo> <msup> <mrow> <mi>φ</mi> </mrow> <mn>2</mn> </msup> </mrow> </math> and zero, respectively (see the text for details on notation). After the application of the feedback unitary <math display="inline"> <msub> <mover accent="true"> <mi>U</mi> <mo stretchy="false">^</mo> </mover> <mtext>f</mtext> </msub> </math>, most correlations are wiped out as <math display="inline"> <mi mathvariant="sans-serif">S</mi> </math> is mapped to the more polarized target <math display="inline"> <msub> <mover accent="true"> <mi>ρ</mi> <mo stretchy="false">^</mo> </mover> <mi mathvariant="sans-serif">S</mi> </msub> </math>, with polarization bias <math display="inline"> <mrow> <msub> <mi>ϵ</mi> <mi mathvariant="sans-serif">A</mi> </msub> <mo form="prefix">sin</mo> <mi>φ</mi> </mrow> </math>. The marginal of <math display="inline"> <mi mathvariant="sans-serif">A</mi> </math> is then dissipatively reset to <math display="inline"> <msubsup> <mover accent="true"> <mi>ρ</mi> <mo stretchy="false">^</mo> </mover> <mn>0</mn> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="sans-serif">A</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </math>.</p> "> Figure 2
<p>(<b>a</b>) Coefficient of performance and (<b>b</b>) figure of merit <span class="html-italic">χ</span> <span class="html-italic">versus</span> the entropy reduction on the registers <math display="inline"> <mrow> <mi mathvariant="script">P</mi> <mo>=</mo> <msub> <mi>k</mi> <mi>B</mi> </msub> <mi>T</mi> <mo>Δ</mo> <msubsup> <mi>S</mi> <mrow> <mn>0</mn> <mo>,</mo> <mtext>f</mtext> </mrow> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="sans-serif">S</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> </math> for fixed initial polarization bias <math display="inline"> <mrow> <msub> <mi>ϵ</mi> <mi mathvariant="sans-serif">S</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>4</mn> </mrow> </math> and different measurement directions: <math display="inline"> <mrow> <mi>φ</mi> <mo>=</mo> <mn>0</mn> </mrow> </math> (solid), <math display="inline"> <mrow> <mi>φ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>4</mn> </mrow> </math> (dashed) and <math display="inline"> <mrow> <mi>φ</mi> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mn>5</mn> </mrow> </math> (dotted). In both plots, the bias of the ancillas <math display="inline"> <msub> <mi>ϵ</mi> <mi mathvariant="sans-serif">A</mi> </msub> </math> ranges from <math display="inline"> <msub> <mi>ϵ</mi> <mi mathvariant="sans-serif">S</mi> </msub> </math> to one, and the temperature is <math display="inline"> <mrow> <mi>T</mi> <mo>=</mo> <mn>1</mn> </mrow> </math>. The part of the curves falling inside the cooling window <math display="inline"> <mrow> <mfrac> <msub> <mi>ϵ</mi> <mi mathvariant="sans-serif">S</mi> </msub> <mrow> <mo form="prefix">sin</mo> <mi>φ</mi> </mrow> </mfrac> <mo><</mo> <msub> <mi>ϵ</mi> <mi mathvariant="sans-serif">A</mi> </msub> <mo><</mo> <mn>1</mn> </mrow> </math> is depicted in black, whereas configurations for which <math display="inline"> <mrow> <mo>Δ</mo> <msubsup> <mi>E</mi> <mrow> <mn>0</mn> <mo>,</mo> <mtext>f</mtext> </mrow> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="sans-serif">S</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo><</mo> <mn>0</mn> </mrow> </math> (<span class="html-italic">i.e.</span>, no real cooling occurs) lie within the shaded red areas. The grey regions correspond to inaccessible configurations, and the optimal working points <math display="inline"> <mrow> <mo stretchy="false">{</mo> <msup> <mi mathvariant="script">P</mi> <mo>⋆</mo> </msup> <mo>,</mo> <msup> <mi>ε</mi> <mo>⋆</mo> </msup> <mo stretchy="false">}</mo> </mrow> </math> and <math display="inline"> <mrow> <mo stretchy="false">{</mo> <msup> <mi mathvariant="script">P</mi> <mo>⋆</mo> </msup> <mo>,</mo> <msup> <mi>χ</mi> <mo>⋆</mo> </msup> <mo stretchy="false">}</mo> </mrow> </math> are indicated with dot-dashed blue lines.</p> "> Figure 3
<p>(<b>a</b>) Entanglement of formation <math display="inline"> <mrow> <mi mathvariant="script">E</mi> <mo stretchy="false">(</mo> <msub> <mover accent="true"> <mi>ϱ</mi> <mo stretchy="false">^</mo> </mover> <mtext>m</mtext> </msub> <mo stretchy="false">)</mo> </mrow> </math>, (<b>b</b>) mutual information <math display="inline"> <mrow> <mi>I</mi> <mo stretchy="false">(</mo> <msub> <mover accent="true"> <mi>ϱ</mi> <mo stretchy="false">^</mo> </mover> <mtext>m</mtext> </msub> <mo stretchy="false">)</mo> </mrow> </math> and (<b>c</b>) quantum discord <math display="inline"> <mrow> <msub> <mi>δ</mi> <mi mathvariant="sans-serif">A</mi> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mover accent="true"> <mi>ϱ</mi> <mo stretchy="false">^</mo> </mover> <mtext>m</mtext> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </math> evaluated after the measurement step, <span class="html-italic">versus</span> the entropy reduction rate <math display="inline"> <mi mathvariant="script">P</mi> </math> and the figure of merit <span class="html-italic">χ</span>. As in <a href="#entropy-18-00048-f002" class="html-fig">Figure 2</a>, the shaded grey areas, the dashed red curve and dot-dashed blue curve correspond to inaccessible configurations, the threshold towards effective cooling and the optimal operation points, respectively. The dotted white line marks configurations above which the feedback unitary <math display="inline"> <msub> <mover accent="true"> <mi>U</mi> <mo stretchy="false">^</mo> </mover> <mtext>f</mtext> </msub> </math> becomes capable of extracting work from <math display="inline"> <msub> <mover accent="true"> <mi>ρ</mi> <mo stretchy="false">^</mo> </mover> <mtext>m</mtext> </msub> </math> (<span class="html-italic">cf.</span> Equation (7)). Finally, the dark shaded grey area of (a) corresponds to working points with zero entanglement between <math display="inline"> <mi mathvariant="sans-serif">S</mi> </math> and <math display="inline"> <mi mathvariant="sans-serif">A</mi> </math>. We have set <math display="inline"> <mrow> <msub> <mi>ϵ</mi> <mi mathvariant="sans-serif">S</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>4</mn> </mrow> </math> and <math display="inline"> <mrow> <mi>T</mi> <mo>=</mo> <mn>1</mn> </mrow> </math>.</p> ">
Abstract
:1. Introduction
2. Feedback Cooling Algorithm
2.1. Coherent Feedback Control
2.2. Stages of the Feedback Cooling Algorithm
2.2.1. Initialization
2.2.2. (Pre-)Measurement
2.2.3. Feedback
2.2.4. Reset of the Ancilla
3. Thermodynamic Analysis
3.1. Energy Balance
3.2. Performance of Feedback Cooling
4. Information-Theoretic Analysis
4.1. Entanglement
4.2. Total, Quantum and Classical Correlations
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
Appendix: Explicit Formula for the Quantum Mutual Information
References
- Anglin, J.R.; Ketterle, W. Bose–Einstein condensation of atomic gases. Nature 2002, 416, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Phillips, W.D. Nobel Lecture: Laser Cooling and Trapping of Neutral Atoms. Rev. Mod. Phys. 1998, 70, 721. [Google Scholar] [CrossRef]
- Masuhara, N.; Doyle, J.M.; Sandberg, J.C.; Kleppner, D.; Greytak, T.J.; Hess, H.F.; Kochanski, G.P. Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett. 1988, 61, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.; Jacobs, K.; Habib, S.; Schwab, K. Feedback cooling of a nanomechanical resonator. Phys. Rev. B 2003, 68, 235328. [Google Scholar] [CrossRef]
- Kleckner, D.; Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 2006, 444, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Poggio, M.; Degen, C.; Mamin, H.; Rugar, D. Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 2007, 99, 017201. [Google Scholar] [CrossRef] [PubMed]
- Kosloff, R.; Levy, A. Quantum Heat Engines and Refrigerators: Continuous Devices. Annu. Rev. Phys. Chem. 2014, 65, 365–393. [Google Scholar] [CrossRef] [PubMed]
- Gelbwaser-Klimovsky, D.; Niedenzu, W.; Kurizki, G. Thermodynamics of Quantum Systems Under Dynamical Control. Adv. At. Mol. Opt. Phys. 2015, 64, 329–407. [Google Scholar]
- Kosloff, R. Quantum Thermodynamics: A Dynamical Viewpoint. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef]
- Koski, J.V.; Kutvonen, A.; Khaymovich, I.M.; Ala-Nissila, T.; Pekola, J.P. On-chip Maxwell’s demon as an information-powered refrigerator. Phys. Rev. Lett. 2015, 115, 260602. [Google Scholar] [CrossRef] [PubMed]
- Kutvonen, A.; Koski, J.; Ala-Nissila, T. Thermodynamics and efficiency of an autonomous on-chip Maxwell’s demon. 2015; arXiv:1509.08288. [Google Scholar]
- Palao, J.P.; Kosloff, R.; Gordon, J.M. Quantum thermodynamic cooling cycle. Phys. Rev. E 2001, 64, 056130. [Google Scholar] [CrossRef] [PubMed]
- Gelbwaser-Klimovsky, D.; Kurizki, G. Heat-machine control by quantum-state preparation: From quantum engines to refrigerators. Phys. Rev. E 2014, 90, 022102. [Google Scholar] [CrossRef] [PubMed]
- Correa, L.A. Multistage quantum absorption heat pumps. Phys. Rev. E 2014, 89, 042128. [Google Scholar] [CrossRef] [PubMed]
- Rezek, Y.; Salamon, P.; Hoffmann, K.H.; Kosloff, R. The quantum refrigerator: The quest for absolute zero. Europhys. Lett. 2009, 85, 30008. [Google Scholar] [CrossRef]
- Kolář, M.; Gelbwaser-Klimovsky, D.; Alicki, R.; Kurizki, G. Quantum Bath Refrigeration towards Absolute Zero: Challenging the Unattainability Principle. Phys. Rev. Lett. 2012, 109, 090601. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.; Alicki, R.; Kosloff, R. Quantum refrigerators and the third law of thermodynamics. Phys. Rev. E 2012, 85, 061126. [Google Scholar] [CrossRef] [PubMed]
- Allahverdyan, A.E.; Hovhannisyan, K.; Mahler, G. Optimal refrigerator. Phys. Rev. E 2010, 81, 051129. [Google Scholar] [CrossRef] [PubMed]
- Correa, L.A.; Palao, J.P.; Adesso, G.; Alonso, D. Performance bound for quantum absorption refrigerators. Phys. Rev. E 2013, 87, 042131. [Google Scholar] [CrossRef] [PubMed]
- Correa, L.A.; Palao, J.P.; Adesso, G.; Alonso, D. Optimal performance of endoreversible quantum refrigerators. Phys. Rev. E 2014, 90, 062124. [Google Scholar] [CrossRef] [PubMed]
- Kosloff, R.; Feldmann, T. Optimal performance of reciprocating demagnetization quantum refrigerators. Phys. Rev. E 2010, 82, 011134. [Google Scholar] [CrossRef] [PubMed]
- Correa, L.A.; Palao, J.P.; Alonso, D. Internal dissipation and heat leaks in quantum thermodynamic cycles. Phys. Rev. E 2015, 92, 032136. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, T.; Kosloff, R. Quantum lubrication: Suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 2006, 73, 025107. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-X.; Li, S.-W. Quantum refrigerator driven by current noise. Europhys. Lett. 2012, 97, 40003. [Google Scholar] [CrossRef]
- Venturelli, D.; Fazio, R.; Giovannetti, V. Minimal Self-Contained Quantum Refrigeration Machine Based on Four Quantum Dots. Phys. Rev. Lett. 2013, 110, 256801. [Google Scholar] [CrossRef] [PubMed]
- Belthangady, C.; Bar-Gill, N.; Pham, L.M.; Arai, K.; Le Sage, D.; Cappellaro, P.; Walsworth, R.L. Dressed-State Resonant Coupling between Bright and Dark Spins in Diamond. Phys. Rev. Lett. 2013, 110, 157601. [Google Scholar] [CrossRef] [PubMed]
- Gelbwaser-Klimovsky, D.; Szczygielski, K.; Vogl, U.; Saß, A.; Alicki, R.; Kurizki, G.; Weitz, M. Laser-induced cooling of broadband heat reservoirs. Phys. Rev. A 2015, 91, 023431. [Google Scholar] [CrossRef]
- Steck, D.A.; Jacobs, K.; Mabuchi, H.; Bhattacharya, T.; Habib, S. Quantum feedback control of atomic motion in an optical cavity. Phys. Rev. Lett. 2004, 92, 223004. [Google Scholar] [CrossRef] [PubMed]
- Bushev, P.; Rotter, D.; Wilson, A.; Dubin, F.; Becher, C.; Eschner, J.; Blatt, R.; Steixner, V.; Rabl, P.; Zoller, P. Feedback cooling of a single trapped ion. Phys. Rev. Lett. 2006, 96, 043003. [Google Scholar] [CrossRef] [PubMed]
- Abah, O.; Lutz, E. Efficiency of heat engines coupled to nonequilibrium reservoirs. Europhys. Lett. 2014, 106, 20001. [Google Scholar] [CrossRef]
- Correa, L.A.; Palao, J.P.; Alonso, D.; Adesso, G. Quantum-enhanced absorption refrigerators. Sci. Rep. 2014, 4, 3949. [Google Scholar] [CrossRef] [PubMed]
- Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Nanoscale Heat Engine Beyond the Carnot Limit. Phys. Rev. Lett. 2014, 112, 030602. [Google Scholar] [CrossRef] [PubMed]
- Alicki, R.; Gelbwaser-Klimovsky, D. Non-equilibrium quantum heat machines. New J. Phys. 2015, 17, 115012. [Google Scholar] [CrossRef]
- Niedenzu, W.; Gelbwaser-Klimovsky, D.; Kurizki, G. Performance limits of multilevel and multipartite quantum heat machines. Phys. Rev. E 2015, 92, 042123. [Google Scholar] [CrossRef] [PubMed]
- Uzdin, R.; Levy, A.; Kosloff, R. Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures. Phys. Rev. X 2015, 5, 031044. [Google Scholar] [CrossRef]
- Alicki, R. The quantum open system as a model of the heat engine. J. Phys. A 1979, 12, L103. [Google Scholar] [CrossRef]
- Kosloff, R. A quantum mechanical open system as a model of a heat engine. J. Chem. Phys. 1984, 80, 1625–1631. [Google Scholar] [CrossRef]
- Boykin, P.O.; Mor, T.; Roychowdhury, V.; Vatan, F.; Vrijen, R. Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. USA 2002, 99, 3388–3393. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.M.; Lloyd, S.; Mor, T.; Roychowdhury, V. Algorithmic cooling of spins: A practicable method for increasing polarization. Int. J. Quantum Inf. 2004, 2, 461–477. [Google Scholar] [CrossRef]
- Baugh, J.; Moussa, O.; Ryan, C.A.; Nayak, A.; Laflamme, R. Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance. Nature 2005, 438, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.; Moussa, O.; Baugh, J.; Laflamme, R. Spin based heat engine: Demonstration of multiple rounds of algorithmic cooling. Phys. Rev. Lett. 2008, 100, 140501. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S. Coherent quantum feedback. Phys. Rev. A 2000, 62, 022108. [Google Scholar] [CrossRef]
- Habib, S.; Jacobs, K.; Mabuchi, H. Quantum Feedback Control. Los Alamos Sci. 2002, 27, 126–135. [Google Scholar]
- Ollivier, H.; Zurek, W.H. Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 2002, 88, 017901. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A 2001, 34, 6899–6905. [Google Scholar] [CrossRef]
- Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Sagawa, T.; Ueda, M. Second law of thermodynamics with discrete quantum feedback control. Phys. Rev. Lett. 2008, 100, 080403. [Google Scholar] [CrossRef]
- Park, J.J.; Kim, K.-H.; Sagawa, T.; Kim, S.W. Heat engine driven by purely quantum information. Phys. Rev. Lett. 2013, 111, 230402. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Petersen, I.R. Quantum control theory and applications: A survey. IET Control Theory Appl. 2010, 4, 2651–2671. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Doherty, A.C.; Habib, S.; Jacobs, K.; Mabuchi, H.; Tan, S.M. Quantum feedback control and classical control theory. Phys. Rev. A 2000, 62, 012105. [Google Scholar] [CrossRef]
- Touchette, H.; Lloyd, S. Information-theoretic approach to the study of control systems. Physica A 2004, 331, 140–172. [Google Scholar] [CrossRef]
- Yamamoto, N. Coherent versus measurement feedback: Linear systems theory for quantum information. Phys. Rev. X 2014, 4, 041029. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Milburn, G.J. Quantum theory of optical feedback via homodyne detection. Phys. Rev. Lett. 1993, 70, 548–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gough, J.E.; Wildfeuer, S. Enhancement of field squeezing using coherent feedback. Phys. Rev. A 2009, 80, 042107. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, J.M.; Jacobs, K. Quantum effects improve the energy efficiency of feedback control. Phys. Rev. E 2014, 89, 042134. [Google Scholar] [CrossRef] [PubMed]
- Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Maximal work extraction from finite quantum systems. Europhys. Lett. 2004, 67, 565–571. [Google Scholar] [CrossRef]
- Gordon, J.M.; Ng, K.C. Cool Thermodynamics; Cambridge International Science Publishing: Cambridge, UK, 2000. [Google Scholar]
- Gordon, J.M. Generalized power versus efficiency characteristics of heat engines: The thermoelectric generator as an instructive illustration. Am. J. Phys. 1991, 59, 551–555. [Google Scholar] [CrossRef]
- Hoffmann, K.H.; Burzler, J.M.; Schubert, S. Endoreversible thermodynamics. J. Non-Equilib. Thermodyn. 1997, 22, 311–355. [Google Scholar]
- Yan, Z.; Chen, J. A class of irreversible Carnot refrigeration cycles with a general heat transfer law. J. Phys. D 1990, 23. [Google Scholar] [CrossRef]
- De Tomás, C.; Hernández, A.C.; Roco, J.M.M. Optimal low symmetric dissipation Carnot engines and refrigerators. Phys. Rev. E 2012, 85, 010104. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, M.; Tu, Z.C.; Hernández, A.C.; Roco, J.M.M. Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators. Phys. Rev. E 2012, 86, 011127. [Google Scholar] [CrossRef] [PubMed]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 823–828. (In German) [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, D.; Pan, J.-W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Nature 1997, 390, 575–579. [Google Scholar] [CrossRef]
- Bennett, C.H.; Wiesner, S.J. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 1992, 69, 2881–2884. [Google Scholar] [CrossRef] [PubMed]
- Mattle, K.; Weinfurter, H.; Kwiat, P.G.; Zeilinger, A. Dense Coding in Experimental Quantum Communication. Phys. Rev. Lett. 1996, 76, 4656–4659. [Google Scholar] [CrossRef] [PubMed]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Jennewein, T.; Simon, C.; Weihs, G.; Weinfurter, H.; Zeilinger, A. Quantum Cryptography with Entangled Photons. Phys. Rev. Lett. 2000, 84, 4729–4732. [Google Scholar] [CrossRef] [PubMed]
- Huelga, S.F.; Macchiavello, C.; Pellizzari, T.; Ekert, A.K.; Plenio, M.B.; Cirac, J.I. Improvement of Frequency Standards with Quantum Entanglement. Phys. Rev. Lett. 1997, 79, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef]
- Hovhannisyan, K.V.; Perarnau-Llobet, M.; Huber, M.; Acín, A. Entanglement Generation is Not Necessary for Optimal Work Extraction. Phys. Rev. Lett. 2013, 111, 240401. [Google Scholar] [CrossRef] [PubMed]
- Modi, K.; Brodutch, A.; Cable, H.; Paterek, T.; Vedral, V. The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 2012, 84, 1655–1707. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Aolita, L.; Boixo, S.; Modi, K.; Piani, M.; Winter, A. Operational interpretations of quantum discord. Phys. Rev. A 2011, 83, 032324. [Google Scholar] [CrossRef]
- Madhok, V.; Datta, A. Interpreting quantum discord through quantum state merging. Phys. Rev. A 2011, 83, 032323. [Google Scholar] [CrossRef]
- Pirandola, S. Quantum discord as a resource for quantum cryptography. Sci. Rep. 2014, 4, 6956. [Google Scholar] [CrossRef] [PubMed]
- Girolami, D.; Tufarelli, T.; Adesso, G. Characterizing Nonclassical Correlations via Local Quantum Uncertainty. Phys. Rev. Lett. 2013, 110, 240402. [Google Scholar] [CrossRef] [PubMed]
- Girolami, D.; Souza, A.M.; Giovannetti, V.; Tufarelli, T.; Filgueiras, J.G.; Sarthour, R.S.; Soares-Pinto, D.O.; Oliveira, I.S.; Adesso, G. Quantum Discord Determines the Interferometric Power of Quantum States. Phys. Rev. Lett. 2014, 112, 210401. [Google Scholar] [CrossRef]
- Zurek, W.H. Quantum discord and Maxwell’s demons. Phys. Rev. A 2003, 67, 012320. [Google Scholar] [CrossRef]
- Girolami, D.; Schmidt, R.; Adesso, G. Towards quantum cybernetics. Ann. Phys. 2015, 527, 757–764. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liuzzo-Scorpo, P.; Correa, L.A.; Schmidt, R.; Adesso, G. Thermodynamics of Quantum Feedback Cooling. Entropy 2016, 18, 48. https://doi.org/10.3390/e18020048
Liuzzo-Scorpo P, Correa LA, Schmidt R, Adesso G. Thermodynamics of Quantum Feedback Cooling. Entropy. 2016; 18(2):48. https://doi.org/10.3390/e18020048
Chicago/Turabian StyleLiuzzo-Scorpo, Pietro, Luis A. Correa, Rebecca Schmidt, and Gerardo Adesso. 2016. "Thermodynamics of Quantum Feedback Cooling" Entropy 18, no. 2: 48. https://doi.org/10.3390/e18020048
APA StyleLiuzzo-Scorpo, P., Correa, L. A., Schmidt, R., & Adesso, G. (2016). Thermodynamics of Quantum Feedback Cooling. Entropy, 18(2), 48. https://doi.org/10.3390/e18020048