[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 19-24.doi: 10.11896/jsjkx.220100064

• 6G 赋能智慧物联网技术与应用* 上一篇    下一篇

RIS辅助双向物联网通信系统性能分析

董丹丹1, 宋康1,2   

  1. 1 青岛大学电子信息学院 山东 青岛 266071
    2 西安邮电大学陕西省信息通信网络及安全重点实验室 西安 710121
  • 收稿日期:2022-01-07 修回日期:2022-03-10 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 宋康(sk@qdu.edu.cn)
  • 作者简介:(2020020613@qdu.edu.cn)
  • 基金资助:
    国家自然科学基金(61901241);陕西省信息通信网络及安全重点实验室开放课题基金(ICNS201903)

Performance Analysis on Reconfigurable Intelligent Surface Aided Two-way Internet of Things Communication System

DONG Dan-dan1, SONG Kang1,2   

  1. 1 College of Electronic & Information Engineering,Qingdao University,Qingdao,Shandong 266071,China
    2 Shaanxi Key Laboratory of Information Communication Network and Security,Xi’an University of Posts & Telecommunications, Xi’an 710121,China
  • Received:2022-01-07 Revised:2022-03-10 Online:2022-06-15 Published:2022-06-08
  • About author:DONG Dan-dan,born in 1998,postgra-duate,is a member of China Computer Federation.Her main research interests include wireless communication and reconfigurable intelligent surface.
    SONG Kang,born in 1986,Ph.D,asso-ciate professor,master supervisor,is a member of China Computer Federation.His main research interests include cooperative transmission and intelligent signal processing.
  • Supported by:
    National Natural Science Foundation of China(61901241) and Open Research Funds of Shaanxi Key Laboratory of Information Communication Network and Security(ICNS201903).

摘要: 可重构智能表面(Reconfigurable Intelligent Surface,RIS)可以智能地调整无线传播环境来显著提升通信性能,相比传统的中继系统具有成本低、功耗低、易部署等特点,被视为6G的潜在关键技术之一。由于RIS可以动态地改变无线电波的相位特征,通过合理地调整相移可以实现网络的可伸缩性,灵活服务于网络中海量的物联网节点。为了进一步提升RIS辅助物联网传输系统的性能,提出了一个由RIS辅助物联网通信的双向传输系统,通过引入全双工技术和自干扰消除技术,有效提高了系统容量和传输效率。推导了所提系统的中断概率、平均误码率和平均信道容量的解析表达式,得到了系统性能与系统中RIS反射单元的数量等系统参数之间的函数关系。蒙特卡洛仿真验证了推导的准确性和所提方案的性能优势。

关键词: 可重构智能表面, 平均误码率, 平均信道容量, 双向, 物联网, 中断概率

Abstract: Reconfigurable intelligent surface(RIS) can intelligently change the wireless propagation environment to significantly improve the performance of wireless communication systems.Compared with traditional relay systems,it has the characteristics of low cost,low power consumption and easy deployment.It is regarded as one of the potential key technologies of 6G.Since RIS can dynamically change the phase characteristics of radio waves,the scalability of the network can be achievedby adjusting the phase shift reasonablely,and massive IoT nodes in the network can be flexibly served.In order to further improve the performance of the RIS-assisted IoT transmission system,a two-way RIS-assisted transmission system is proposed.By introducing full-duplex and self-interference cancellation technology,the system capacity and transmission efficiency are effectively improved.The analy-tical expressions for the outage probability,average bit error rate and average channel capacity of the proposed system are derived,and the relationship between system performance and system parameters such as the number of RIS reflecting elements in the system is obtained.The accuracy of the derivation and the performance advantages of the proposed scheme have been verified by Monte Carlo simulation.

Key words: Average bit error rate, Average channel capacity, Internet of Things, Outage probability, Reconfigurable intelligent surface, Two-way

中图分类号: 

  • TN929
[1] XIE Y Y,SHI J,HUANG S K,et al.Overview of 5G-oriented Named Data Network Internet of Things Research[J].Chinese Journal of Computer Science,2020,47(4):217-225.
[2] YOU X H,WANG C X,HUANG J,et al.Towards 6G wireless communication networks:Vision,enabling technologies,and new paradigm shifts[J].Science China Information Sciences,2020,9(5):586-590.
[3] ZHU Z Y,WANG Z X,XU J L,et al.Future Wireless Communications Assisted by Intelligent Reflecting Surface:State of Art and Prospects[J].Chinese Journal of Aeronautics,2022,43(2):203-217.
[4] WU Q,ZHANG R.Intelligent Reflecting Surface EnhancedWireless Network via Joint Active and Passive Beamforming[J].IEEE Transactions on Wireless Communications,2019,18(11):5394-5409.
[5] BASAR E,DI RENZO M,ROSNY J D,et al.Wireless Communications through Reconfigurable Intelligent Surfaces[J/OL].IEEE Access,2019,7:116753116773.https://ieeexplore.ieee.org/document/8796365.
[6] YANG L,YANG J,XIE W,et al.Secrecy Performance Analysis of RIS-Aided Wireless Communication Systems[J].IEEE Transactions on Vehicular Technology,2020,69(10):12296-12300.
[7] YANG L,MENG F,WU Q,et al.Accurate Closed-Form Ap-proximations to Channel Distributions of RIS-Aided Wireless Systems[J/OL].https://arXiv.org/abs/2007.05221v1.
[8] CUI M,ZHANG G,ZHANG R.Secure Wireless Communication via Intelligent Reflecting Surface[J].IEEE Wireless Communication Letters,2019,8(5):1410-1414.
[9] SHEN H,XU W,GONG S,et al.Secrecy Rate Maximization for Intelligent Reflecting Surface Assisted Multi-Antenna Communications[J].IEEE Communications Letters,2019,23(9):1488-1492.
[10] WANG J,ZHANG W,BAO X,et al.Outage Analysis for Intelligent Reflecting Surface Assisted Vehicular Communication Networks[C]//2020 IEEE Global Communications Conference(GLOBECOM 2020).2020:1-6.
[11] HUANG C,ALEXANDROPOULOS G C,YUEN C,et al.Indoor Signal Focusing with Deep Learning Designed Reconfigurable Intelligent Surfaces[C]//2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications(SPAWC).IEEE,2019:1-5.
[12] PENG Z,ZHANG Z,PAN C,et al.Multiuser Full-Duplex Two-Way Communications via Intelligent Reflecting Surface[J].IEEE Transactions on Signal Processing,2021,69:837-851.
[13] BA C N,HOANG T M,LE T D,et al.On Performance of Two-Way Full-Duplex Communication System With Reconfigurable Intelligent Surface[J].IEEE Access,2021,9:81274-81285.
[14] CHEN Q,LI M,YANG X,et al.Impact of Residual Hardware Impairment on the IoT Secrecy Performance of RIS-assisted NOMA Networks[J].IEEE Access,2021,9:42583-42592.
[15] WANG Z R,LIU L,LI H,et al.Intelligent reflecting surface design for 6G Internet of Things[J].Chinese Journal on Internet of Things,2020,4(2):84-95.
[16] MAKARFI A U,RABIE K M,KAIWARTYA O,et al.Reconfigurable Intelligent Surface Enabled IoT Networks in Genera-lized Fading Channels[C]//2020 IEEE International Conference on Communications(ICC 2020).IEEE,2020:1-6.
[17] JUNG M,SAAD W,DEBBAH M,et al.On the Optimality of Reconfigurable Intelligent Surfaces(RISs):Passive Beamfor-ming,Modulation,and Resource Allocation[J].IEEE Transactions on Wireless Communications,2021,20(7):4347-4363.
[18] ATAPATTU S,FAN R,DHARMAWANSA P,et al.Reconfigu-rable Intelligent Surface assisted Two-Way Communications:Performance Analysis and Optimization[J].IEEE Transactions on Communications,2020,68(10):6552-6567.
[19] BOULOGEORGOS A,ALEXIOU A.Performance Analysis ofReconfigurable Intelligent Surface-Assisted Wireless Systems and Comparison With Relaying[J].IEEE Access,2020,8:94463-94483.
[20] PEPPAS K P.Accurate closed-form approximations to gene-ralised-K sum distributions and applications in the performance analysis of equal-gain combining receivers[J].IET Communications,2011,5(7):982-989.
[21] GRADSHTEUIN I S,RYZHIK I M,JEFFREY A,et al.Table of Integrals,Series,and Products[M].England:Elsevier,2007:853.
[22] YANG L,QARAQE K,SERPEDIN E,et al.Performance Ana-lysis of Amplify-and-Forward Two-Way Relaying with Co-Channel Interference and Channel Estimation Error[J].IEEE Transactions on Communications,2013,61(6):2221-2231.
[23] The Wolfram Functions Site.Meijer G-function:Integration(formula 07.34.21.0086)[EB/OL].(2001-10-29)[2021-11-28].http://functions.wolfram.com/07.34.21.0086.01.
[1] 蹇奇芮, 陈泽茂, 武晓康.
面向无人机通信的认证和密钥协商协议
Authentication and Key Agreement Protocol for UAV Communication
计算机科学, 2022, 49(8): 306-313. https://doi.org/10.11896/jsjkx.220200098
[2] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[3] 张翀宇, 陈彦明, 李炜.
边缘计算中面向数据流的实时任务调度算法
Task Offloading Online Algorithm for Data Stream Edge Computing
计算机科学, 2022, 49(7): 263-270. https://doi.org/10.11896/jsjkx.210300195
[4] 赵冬梅, 吴亚星, 张红斌.
基于IPSO-BiLSTM的网络安全态势预测
Network Security Situation Prediction Based on IPSO-BiLSTM
计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103
[5] 高文龙, 周天阳, 朱俊虎, 赵子恒.
基于双向蚁群算法的网络攻击路径发现方法
Network Attack Path Discovery Method Based on Bidirectional Ant Colony Algorithm
计算机科学, 2022, 49(6A): 516-522. https://doi.org/10.11896/jsjkx.210500072
[6] 张翕然, 刘万平, 龙华.
物联网僵尸网络病毒的传播动力学模型与分析
Dynamic Model and Analysis of Spreading of Botnet Viruses over Internet of Things
计算机科学, 2022, 49(6A): 738-743. https://doi.org/10.11896/jsjkx.210300212
[7] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[8] 沈家芳, 钱丽萍, 杨超.
面向集能型中继窄带物联网的非正交多址接入和多维网络资源优化
Non-orthogonal Multiple Access and Multi-dimension Resource Optimization in EH Relay NB-IoT Networks
计算机科学, 2022, 49(5): 279-286. https://doi.org/10.11896/jsjkx.210400239
[9] 潘志豪, 曾碧, 廖文雄, 魏鹏飞, 文松.
基于交互注意力图卷积网络的方面情感分类
Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification
计算机科学, 2022, 49(3): 294-300. https://doi.org/10.11896/jsjkx.210100180
[10] 张振超, 刘亚丽, 殷新春.
适用于物联网环境的无证书广义签密方案
New Certificateless Generalized Signcryption Scheme for Internet of Things Environment
计算机科学, 2022, 49(3): 329-337. https://doi.org/10.11896/jsjkx.201200256
[11] 丁锋, 孙晓.
基于注意力机制和BiLSTM-CRF的消极情绪意见目标抽取
Negative-emotion Opinion Target Extraction Based on Attention and BiLSTM-CRF
计算机科学, 2022, 49(2): 223-230. https://doi.org/10.11896/jsjkx.210100046
[12] 胡艳丽, 童谭骞, 张啸宇, 彭娟.
融入自注意力机制的深度学习情感分析方法
Self-attention-based BGRU and CNN for Sentiment Analysis
计算机科学, 2022, 49(1): 252-258. https://doi.org/10.11896/jsjkx.210600063
[13] 冯登国.
一种新的密码本原:棘轮密钥交换的定义、模型及构造
New Cryptographic Primitive: Definition, Model and Construction of Ratched Key Exchange
计算机科学, 2022, 49(1): 1-6. https://doi.org/10.11896/jsjkx.yg20220101
[14] 张叶, 李志华, 王长杰.
基于核密度估计的轻量级物联网异常流量检测方法
Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method
计算机科学, 2021, 48(9): 337-344. https://doi.org/10.11896/jsjkx.200600108
[15] 刘文洋, 郭延哺, 李维华.
识别关键蛋白质的混合深度学习模型
Identifying Essential Proteins by Hybrid Deep Learning Model
计算机科学, 2021, 48(8): 240-245. https://doi.org/10.11896/jsjkx.200700076
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!