计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 125-132.doi: 10.11896/jsjkx.210600135
康雁, 王海宁, 陶柳, 杨海潇, 杨学昆, 王飞, 李浩
KANG Yan, WANG Hai-ning, TAO Liu, YANG Hai-xiao, YANG Xue-kun, WANG Fei, LI Hao
摘要: 特征选择在数据预处理阶段中极为重要。特征选择的优劣不仅影响着神经网络训练的时间长短,更影响神经网络性能的好坏。灰狼改进花授粉算法(Grey Wolf Improved Flower Pollination Algorithm,GIFPA)是一种基于花授粉算法(Flower Pollination Algorithm,FPA)框架与灰狼优化算法融合的混合算法,将其应用于特征选择问题,既可以保留原始特征的内涵信息,又可以最大化分类特征的准确率。GIFPA算法在花授粉算法的异花授粉阶段中加入了最差个体信息,并用作全局搜索,将灰狼优化算法中的狩猎过程作为局部搜索,并且通过转换系数来调节二者的搜索过程。同时,为了克服群智能算法易陷入局部最优的问题,首次采用数据挖掘领域中的RelifF算法,通过RelifF算法过滤出高权重特征并用于改进最佳个体信息。为了验证算法的性能,实验选取UCI数据库中21个领域的经典数据集进行测试,利用K近邻(KNN)分类器进行分类测评,以适应度值和准确率作为评价标准,并通过K-折交叉验证来克服过拟合问题。实验选择了包括FPA算法在内的多种经典算法和先进算法进行比较,结果表明GIFPA算法在特征选择问题上有很强的竞争力。
中图分类号:
[1] ZAWBAA H M,EMARY E,GROSAN C.Feature Selection via Chaotic Antlion Optimization[J].Plos One,2016,11(3):e0150652. [2] JIN X M,HUA W Q.Resource Management for Mobile Cloud Computing Energy Consumption Optimization[J].Computer Science,2020,47(6):253-257. [3] LIU Y,CHAI Y,LIU B,et al.Bearing Fault Diagnosis Based on Energy Spectrum Statistics and Modified Mayfly Optimization Algorithm[J].Sensors,2021,21(6):2245. [4] RAVI K,MALLIDI S,SANTOSH J K,et al.Bat optimizationalgorithm for wrapper-based feature selection and performance improvement of android malware detection[J].IET Networks,2021:1-10. [5] FENG Y,WANG G G,DEB S,et al.Solving 0-1 knapsack problem by a novel binary monarch butterfly optimization[J].Neural Computing and Applications,2017,28(7):1-16. [6] SALEHI M,FARHADI S,MOIENI A,et al.A hybrid modelbased on general regression neural network and fruit fly optimization algorithm for forecasting and optimizing paclitaxel biosynthesis in Corylus avellana cell culture[J].Plant Methods,2021,17(1):13. [7] TUBISHAT M,JA'AFAR S,ALSWAITTI M,et al.Dynamic Salp Swarm Algorithm for Feature Selection[J].Expert Systems with Applications,2020,147:113873. [8] ARORA S,ANAND P.Binary butterfly optimization approaches for feature selection[J].Expert Systems with Application,2019,116(FEB.):147-160. [9] BHATTACHARYYA T,CHATTERJEE B,SINGH P K,et al.Mayfly in Harmony:A New Hybrid Meta-Heuristic Feature Selection Algorithm[J].IEEE Access,2020,8:195929-195945. [10] WANG D,CHEN H,LI T,et al.A novel quantum grasshopper optimization algorithm for feature selection[J].International Journal of Approximate Reasoning,2020,127:33-53. [11] CHEN H W,HU Z,HAN L,et al.A Spark-based Distributed Whale Optimization Algorithm for Feature Selection[C]//The 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems:Technology and Applications.IEEE,2019:70-74. [12] FARIS H,MAFARJA M M,HEIDARI A A,et al.An Efficient Binary Salp Swarm Algorithm with Crossover Scheme for Feature Selection Problems[J].Knowledge-Based Systems,2018,154(Aug.15):43-67. [13] YAN C,MA J,LUO H,et al.A hybrid algorithm based on binary chemical reaction optimization and tabu search for feature selection of high-dimensional biomedical data[J].Tsinghua Science and Technology,2018,23(6):733-743. [14] SHI L,WAN Y C,GAO X J,et al.Feature Selection for Object-Based Classification of High-Resolution Remote Sensing Images Based on the Combination of a Genetic Algorithm and Tabu Search[J].Computational Intelligence and Neuroscience,2018,2018. [15] WANG M,LIN J,YUE L,et al.Compensation for mobile ca-rrier magnetic interference in a SQUID-based full-tensor magnetic gradiometer using the flower pollination algorithm[J].Measurement Science and Technology,2021,32(8):085010. [16] POA B,SC A,CYT A,et al.Prediction of tea theanine content using near-infrared spectroscopy and flower pollination algorithm-ScienceDirect[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2021,255. [17] ANDERSEN C M,BRO R.Practical aspects of PARAFAC mo-deling of fluorescence excitation-emission data[J].Journal of Chemometrics,2010,17(4):200-215. [18] JUNG D.Distributed Feature Selection for Multi-Class Classification Using ADMM[J].IEEE Control Systems Letters,2020,5(3):821-826. [19] CHANDRASHEKAR G,SAHIN F.A survey on feature selection methods[J].Computers & Electrical Engineering,2014,40(1):16-28. [20] JIMÉNEZ-CORDERO A,MORALES J M,PINEDA S.A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification[J].European Journal of Operational Research,2021,293(1):24-35. [21] SM A,SMM B,AL A.Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69:46-61. [22] SUNNY S,JAYARAJ P B.FPDock:Protein-Protein DockingUsing Flower Pollination Algorithm[J].Computational Biology and Chemistry,2021,93(2):107518. [23] RAO R V.Jaya:A simple and new optimization algorithm forsolving constrained and unconstrained optimization problems[J].International Journal of Industrial Engineering Computations,2016,7(1934):19-34. [24] YANG X S.Flower Pollination Algorithm for Global Optimization[C]//International Conference on Unconventional Computing and Natural Computation.Berlin:Springer,2012:240-249. [25] MIRJALILI S,MIRJALILI S M,YANG X S.Binary bat algorithm[J].Neural Computing & Applications,2014,25(3/4):663-681. [26] MIRJALILI S,MIRJALILI S M,HATAMLOU A.Multi-Verse Optimizer:a nature-inspired algorithm for global optimization[J].Neural Computing and Applications,2015,27(2):495-513. [27] SOUZA R,COELHO L,MACEDO C,et al.A V-Shaped Binary Crow Search Algorithm for Feature Selection[C]//2018 IEEE Congress on Evolutionary Computation(CEC).IEEE,2018:1-8. [28] HUSSIEN A G,HASSANIEN A E,HOUSSEIN E H,et al.S-shaped Binary Whale Optimization Algorithm for Feature Selection[M]//Recent Trends in Signal and Image Processing.Singapore:Springer,2019:79-87. [29] MAFARJA M,JARRAR R,AHMAD S,et al.Feature Selection Using Binary Particle Swarm Optimization with Time Varying Inertia Weight Strategies[C]//International Conference on Future Networks & Distributed Systems.2018:1-9. [30] ABDEL-BASSET M,EL-SHAHAT D,EL-HENAWY I,et al.A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection[J].Expert Systems with Application,2020,139(Jan.):112824.1-112824.14. |
[1] | 李斌, 万源. 基于相似度矩阵学习和矩阵校正的无监督多视角特征选择 Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment 计算机科学, 2022, 49(8): 86-96. https://doi.org/10.11896/jsjkx.210700124 |
[2] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[3] | 范星泽, 禹梅. 改进灰狼算法的无线传感器网络覆盖优化 Coverage Optimization of WSN Based on Improved Grey Wolf Optimizer 计算机科学, 2022, 49(6A): 628-631. https://doi.org/10.11896/jsjkx.210500037 |
[4] | 储安琪, 丁志军. 基于灰狼优化算法的信用评估样本均衡化与特征选择同步处理 Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation 计算机科学, 2022, 49(4): 134-139. https://doi.org/10.11896/jsjkx.210300075 |
[5] | 孙林, 黄苗苗, 徐久成. 基于邻域粗糙集和Relief的弱标记特征选择方法 Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief 计算机科学, 2022, 49(4): 152-160. https://doi.org/10.11896/jsjkx.210300094 |
[6] | 李宗然, 陈秀宏, 陆赟, 邵政毅. 鲁棒联合稀疏不相关回归 Robust Joint Sparse Uncorrelated Regression 计算机科学, 2022, 49(2): 191-197. https://doi.org/10.11896/jsjkx.210300034 |
[7] | 张叶, 李志华, 王长杰. 基于核密度估计的轻量级物联网异常流量检测方法 Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method 计算机科学, 2021, 48(9): 337-344. https://doi.org/10.11896/jsjkx.200600108 |
[8] | 杨蕾, 降爱莲, 强彦. 基于自编码器和流形正则的结构保持无监督特征选择 Structure Preserving Unsupervised Feature Selection Based on Autoencoder and Manifold Regularization 计算机科学, 2021, 48(8): 53-59. https://doi.org/10.11896/jsjkx.200700211 |
[9] | 侯春萍, 赵春月, 王致芃. 基于自反馈最优子类挖掘的视频异常检测算法 Video Abnormal Event Detection Algorithm Based on Self-feedback Optimal Subclass Mining 计算机科学, 2021, 48(7): 199-205. https://doi.org/10.11896/jsjkx.200800146 |
[10] | 胡艳梅, 杨波, 多滨. 基于网络结构的正则化逻辑回归 Logistic Regression with Regularization Based on Network Structure 计算机科学, 2021, 48(7): 281-291. https://doi.org/10.11896/jsjkx.201100106 |
[11] | 周钢, 郭福亮. 基于特征选择的高维数据集成学习方法研究 Research on Ensemble Learning Method Based on Feature Selection for High-dimensional Data 计算机科学, 2021, 48(6A): 250-254. https://doi.org/10.11896/jsjkx.200700102 |
[12] | 丁思凡, 王锋, 魏巍. 一种基于标签相关度的Relief特征选择算法 Relief Feature Selection Algorithm Based on Label Correlation 计算机科学, 2021, 48(4): 91-96. https://doi.org/10.11896/jsjkx.200800025 |
[13] | 滕俊元, 高猛, 郑小萌, 江云松. 噪声可容忍的软件缺陷预测特征选择方法 Noise Tolerable Feature Selection Method for Software Defect Prediction 计算机科学, 2021, 48(12): 131-139. https://doi.org/10.11896/jsjkx.201000168 |
[14] | 张亚钏, 李浩, 宋晨明, 卜荣景, 王海宁, 康雁. 混合人工化学反应优化和狼群算法的特征选择 Hybrid Artificial Chemical Reaction Optimization with Wolf Colony Algorithm for Feature Selection 计算机科学, 2021, 48(11A): 93-101. https://doi.org/10.11896/jsjkx.210100067 |
[15] | 全艺璇, 郑嘉利, 罗文聪, 林子涵, 谢孝德. 基于改进型灰狼算法的RFID网络规划 Improved Grey Wolf Optimizer for RFID Network Planning 计算机科学, 2021, 48(1): 253-257. https://doi.org/10.11896/jsjkx.200200095 |
|