计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 119-126.doi: 10.11896/jsjkx.210700145
魏鹏1, 马玉亮2, 袁野3, 吴安彪1
WEI Peng1, MA Yu-liang2, YUAN Ye3, WU An-biao1
摘要: 影响力最大化IM问题旨在查找社交网络中的一组用户,通过这些用户,使信息在网络中传播的范围最大化。现有研究主要关注静态网络中的IM问题,然而在现实生活中,社交网络是不断演化的,基于静态网络的传播模型(如独立级联模型、线性阈值模型)无法适用于演化网络中的信息传播过程。同时,现有研究忽略了用户行为对信息传播的影响。因此,针对该问题,提出了一种用户行为驱动的独立级联BDIC传播模型,该模型主要根据用户行为对信息的传播过程进行建模,可有效刻画演化社交网络中的信息传播过程。在该模型的基础上,提出了用户行为驱动的影响力最大化算法,主要包括3个步骤:首先,建模消息传播过程,计算演化社交网络中的信息传播概率;然后,提出一种用户行为驱动的反向影响力采样方法,有效查询单个时间点下的种子用户;最后,设计一种不同时间节点(时间序列)下的种子节点查询方法,有效反映演化社交网络中种子节点动态变化的特性。为了评估所提算法的有效性,设计了种子节点与受影响节点的相似度对比方法。通过大量真实数据集上的实验,验证了信息传播概率算法的高效性和扩展性,证明了相比普通的独立级联模型,BDIC模型能更好地建模演化社交网络中的信息传播过程。
中图分类号:
[1] LI Y,FAN J,WANG Y,et al.Influence Maximization on Social Graphs:A Survey[C]//IEEE Transactions on Knowledge and Data Engineering.IEEE,2018:1852-1872. [2] GOYAL A,BONCHI F,LAKSHMANAN L.Learning influence probabilities in social networks[C]//Proceedings of the 3rd ACM International Conference on Web Search and Data Mi-ning.New York:WSDM,2010:241-250. [3] DOMINGOS P,RICHARDSON M.Mining the network value of customers[C]//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.New York:ACM,2001:57-66. [4] CNNIC.The 46th china Statistical Report on Internet Development[R/OL].2020.http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/202009/t2020092971257.html. [5] MATSUBARA Y,SAKURAI Y,PRAKASH B A,et al.Riseand fall patterns of information diffusion:model and implications[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2012:6-14. [6] KEMPE D,KLEINBERG J,TARDOS E.Maximizing the spread of influence through a social network[C]//Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2003:137-146. [7] YOSHIDA A,HIGURASHI T,MARUISHI M,et al.New Performance Index ‘Attractiveness Factor’ for Evaluating Websites via Obtaining Transition of Users’ Interests[J].Data Science and Engineering,2020,5(3):48-64. [8] TIAN S,MO S,PENG Z.Deep Reinforcement Learning-BasedApproach to Tackle Topic-Aware Influence Maximization[J].Data Science and Engineering,2020,5(3):1-11. [9] YANG Y,MAO X,PEI J,et al.Continuous Influence Maximization[J].Association for Computing Transactions on Knowledge Discovery from Data,2020,14(3):1-38. [10] HUANG H,MENG Z,SHEN H.Competitive and complementary influence maximization in social network:A follower’s pers-pective[J].Knowledge-Based Systems,2021,213(3):106600. [11] OHSAKA N,AKIBA T,YOSHIDA Y,et al.Dynamic influence analysis in evolving networks[C]//Proceedings of the Very Large Data Bases Endowment.2016:1077-1088. [12] WANG B,CHEN G,FU L,et al.DRIMUX:Dynamic Rumor Influence Minimization with User Experience in Social Networks[C]//IEEE Transactions on Knowledge and Data Engineering.2017:2168 -2181. [13] WANG Y,FAN Q,LI Y,et al.Real-Time Influence Maximization on Dynamic Social Streams[C]//Proceedings of the VLDB Endowment.2017:805-816. [14] XIE M,YANG Q,WANG Q,et al.DynaDiffuse:a dynamic diffusion model for continuous time constrained influence maximization[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.2015:346-352. [15] WU A B,YUAN Y,QIAO B Y,et al.The Influence Maximization Problem Based on Large-Scale Temporal Graph[J].Chinese Journal of Computers,2019,42(12):2647-2664. [16] WEI J,CUI Z,QIU L,et al.A community-based algorithm for influence maximization on dynamic social networks[J].Intelligent Data Analysis,2020,24(1):959-971. [17] DUPUIS D,MOUZA D,TRAVERS N,et al.Real-Time In-fluence Maximization in a RTB Setting[J].Data Science and Engineering,2020,5(9):224-239. [18] LI W,ZHONG K,WANG J,et al.A dynamic algorithm based on cohesive entropy for influence maximization in social networks[J].Expert Systems with Applications,2021,169(5):114207. [19] WANG C,LIU Y,GAO X,et al.A Reinforcement LearningModel for Influence Maximization in Social Networks[C]//Database Systems for Advanced Applications.Cham,2021:701-709. [20] WU X,FU L,MENG J,et al.Maximizing Influence Diffusionover Evolving Social Networks[C]//Proceedings of the Fourth International Workshop on Social Sensing.New York,USA,2019:6-11. [21] BORGS C,BRAUTBAR M,CHAYES J,et al.Maximizing Social Influence in Nearly Optimal Time[C]//Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms.Society for Industrial and Applied Mathematics,2013:946-957. [22] GUO Q,WANG S,WEI Z,et al.Influence Maximization Revisited:Efficient Reverse Reachable Set Generation with Bound Tightened[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data.New York,USA,2020:2167-2181. [23] MAO J X,LIU Y Q,ZANG M,et al.Social Influence Analysis for Micro-Blog User Based on User Behavior[J].Chinese Journal of Computers,2014,37(4):791-800. [24] HOGG T,LERMAN K.Social dynamics of Digg[J].EPJ Data Science,2012,1(1):1-5. [25] ZHANG J,LIU B,TANG J,et al.Social influence locality for modeling retweeting behaviors[C]//Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence.Beijing,China,2013:2761-2767. [26] ZHANG M,LI W H. Influence maximization algorithm based on user interactive representation[J/OL].Journal of Computer Applications.http://kns.cnki.net/kcms/dtail/51.1307.TP.20201229.1645.010.html. |
[1] | 孔世明, 冯永, 张嘉云. 融合知识图谱的多层次传承影响力计算与泛化研究 Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph 计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144 |
[2] | 陈晋音, 张敦杰, 林翔, 徐晓东, 朱子凌. 基于影响力最大化策略的抑制虚假消息传播的方法 False Message Propagation Suppression Based on Influence Maximization 计算机科学, 2020, 47(6A): 17-23. https://doi.org/10.11896/JsJkx.190900086 |
[3] | 孔芳, 李奇之, 李帅. 在线影响力最大化研究综述 Survey on Online Influence Maximization 计算机科学, 2020, 47(5): 7-13. https://doi.org/10.11896/jsjkx.200200071 |
[4] | 吕文渊,周丽华,廖仁建. 一种面向主题耦合的影响力最大化算法 Coupled Topic-oriented Influence Maximization Algorithm 计算机科学, 2017, 44(12): 28-32. https://doi.org/10.11896/j.issn.1002-137X.2017.12.005 |
[5] | 熊超,陈云芳,仓基云. 网络演化中基于事件的节点影响力分析 Event-based Node Influence Analysis in Social Network Evolution 计算机科学, 2016, 43(Z6): 404-409. https://doi.org/10.11896/j.issn.1002-137X.2016.6A.096 |
[6] | 蔡国永,裴广战. 基于LT+模型的社交网络影响力最大化研究 Influence Maximization Based on LT+ Model in Social Networks 计算机科学, 2016, 43(9): 99-102. https://doi.org/10.11896/j.issn.1002-137X.2016.09.018 |
[7] | 王俊,余伟,胡亚慧,李石君. 基于3-layer中心度的社交网络影响力最大化算法 Heuristic Algorithm Based on 3-layer Centrality for Influence Maximization in Social Networks 计算机科学, 2014, 41(1): 59-63. |
|