(n,k)-冒泡排序网络,并行计算机系统,概率故障,互连网络,平均失效时间,子网络可靠性," /> (n,k)-冒泡排序网络,并行计算机系统,概率故障,互连网络,平均失效时间,子网络可靠性,"/> (n,Interconnection network,k)-bubble-sort network,Mean time to failure,Parallel computer system,Probabilistic failure,Subnetwork reliability,"/> <i>(n,k)</i>-冒泡排序网络的子网络可靠性
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2021, Vol. 48 ›› Issue (4): 43-48.doi: 10.11896/jsjkx.201100139

• 计算机科学理论 • 上一篇    下一篇

(n,k)-冒泡排序网络的子网络可靠性

冯凯, 马鑫玉   

  1. 山西大学计算机与信息技术学院 太原030006
  • 收稿日期:2020-06-24 修回日期:2021-01-10 出版日期:2021-04-15 发布日期:2021-04-09
  • 通讯作者: 冯凯(fengkai@sxu.edu.cn)
  • 基金资助:
    国家自然科学基金(61502286)

Subnetwork Reliability of (n,k)-bubble-sort Networks

FENG Kai, MA Xin-yu   

  1. School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China
  • Received:2020-06-24 Revised:2021-01-10 Online:2021-04-15 Published:2021-04-09
  • About author:FENG Kai,born in 1987,Ph.D,associate professor,master supervisor,is a member of China Computer Federation.His main research interests include fault-tolerance of interconnection network,graph theory and its applications.
  • Supported by:
    National Natural Science Foundation of China(61502286).

摘要: 并行计算机系统互连网络的拓扑性质对系统功能的实现起着重要的作用。为了精确度量基于(n,k)-冒泡排序网络构建的并行计算机系统的子网络容错能力,建立了(n,k)-冒泡排序网络中(n-m,k-m)-冒泡排序子网络与特定字符串之间的一一对应关系,研究了点故障模型下(n,k)-冒泡排序网络中(n-m,k-m)-冒泡排序子网络的可靠性。当2≤k≤n-2,1≤m≤k-1时,首先在概率故障条件下给出了(n,k)-冒泡排序网络中存在无故障的(n-m,k-m)-冒泡排序子网络的概率估计,并通过仿真实验验证了所得结果的精确性;其次,得出了不同数目的(n-m,k-m)-冒泡排序子网络保持无故障状态的平均失效时间的计算公式,仿真实验表明理论结果与仿真结果趋于一致。

关键词: (n,k)-冒泡排序网络, 并行计算机系统, 概率故障, 互连网络, 平均失效时间, 子网络可靠性

Abstract: Topological properties of the interconnection network of a parallel computer system play an important role in realizing functions of the system.In order to measure the fault tolerance abilities of subnetworks in the parallel computer system which is built based on the (n,k)-bubble-sort network,the one-to-one relation between (n-m,k-m)-bubble-sort subnetworks of the (n,k)-bubble-sort network and specific strings is constructed,and the reliability of (n-m,k-m)-bubble-sort subnetworks in the (n,k)-bubble-sort network is studied under the node fault model.Assuming that 2≤k≤n-2 and 1≤m≤k-1,the probability that at least one (n-m,k-m)-bubble-sort subnetwork is fault-free in an (n,k)-bubble-sort network under the probabilistic fault condition is firstly given,and the simulation experiments demonstrate the accuracy of the given results.Then the calculation formula of the mean time to failure to maintain the fault-free status of different number of (n-m,k-m)-bubble-sort subnetworks is obtained,and the theoretical results are shown to be in accordance with the simulation results.

Key words: (n, Interconnection network, k)-bubble-sort network, Mean time to failure, Parallel computer system, Probabilistic failure, Subnetwork reliability

中图分类号: 

  • TP393.02
[1]CHANG Y,BHUYAN L N.A combinatorial analysis of subcube reliability in hypercube[J].IEEE Transactions on Compu-ters,1995,44(7):952-956.
[2]LIN L,XU L,ZHOU S,et al.The reliability of subgraphs in the arrangement graph[J].IEEE Transactions on Reliability,2015,64(2):807-818.
[3]LI X,ZHOU S,XU X,et al.The reliability analysis based on subsystems of (n,k)-star graph[J].IEEE Transactions on Reliability,2016,65(4):1700-1709.
[4]KUNG T L,TENG Y H,LIN C K,et al.Combinatorial analysisof the subsystem reliability of the split-star network[J].Information Sciences,2017,415:28-40.
[5]FENG K,JI Z,WEI W.Subnetwork reliability analysis in k-ary n-cubes[J].Discrete Applied Mathematics,2019,267:85-92.
[6]ABRAHAM S,PADMANABHAN K.Reliability of the hypercube[C]//Proceedings of the 1988 International Conference on Parallel Processing.Piscataway:IEEE,1988:90-94.
[7]ZHOU S,LI X,LI J,et al.Reliability assessment of multiprocessor system based on (n,k)-star network[J].IEEE Transactions on Reliability,2017,66(4):1025-1035.
[8]LV M,ZHOU S,SUN X,et al.Reliability evaluation of datacenter network DCell[J].Parallel Processing Letters,2018,28(4):1850015.
[9]FENG K,LI J.Reliability assessment of k-ary n-cube networks[J].Journal of Computer Applications,2019,39(11):3323-3327.
[10]SHAWASH N.Relationships among popular interconnectionnetworks and their common generalization[D].Oakland:Oakland University,2008.
[11]CHENG E,LIPTÁK L,SHERMAN D.Matching preclusion for the (n,k)-bubble-sort graphs[J].International Journal of Computer Mathematics,2010,87(11):2408-2418.
[12]YANG Y X,QIU Y N.Sub-network preclusion in(n,k)-bubble-sort networks[J].Computer Science,2017,44(11):264-267.
[13]ZHAO S,HAO R,WU L.The generalized connectivity of (n,k)-bubble-sort graphs[J].The Computer Journal,2019,62(9):1277-1283.
[14]ZHAO S,HAO R.The fault tolerance of(n,k)-bubble-sort networks[J].Discrete Applied Mathematics,2020,285:204-211.
[15]BONDY J A,MURTY U S R.Graph Theory[M].New York:Springer,2008:1-356.
[16]SANE S.Combinatorial Techniques[M].New Delhi:Hindustan Book Agency,2016:57-79.
[1] 徐佳庆, 胡小月, 唐付桥, 王强, 何杰.
基于随机森林的高性能互连网络阻塞故障检测
Detecting Blocking Failure in High Performance Interconnection Networks Based on Random Forest
计算机科学, 2021, 48(6): 246-252. https://doi.org/10.11896/jsjkx.201200142
[2] 冯凯, 李婧.
k元n方体的子网络可靠性研究
Study on Subnetwork Reliability of k-ary n-cubes
计算机科学, 2020, 47(7): 31-36. https://doi.org/10.11896/jsjkx.190700170
[3] 师腾, 师海忠.
互连网络的模p剩余类加群的笛卡尔积模型
Model of Cartesian Product of Modulo p Residual Class Addition Group for Interconnection Networks
计算机科学, 2020, 47(6A): 299-304. https://doi.org/10.11896/JsJkx.190700047
[4] 林政宽,赵源,樊建席,程宝雷.
基于顶点度数的完全独立生成树研究
Research on Completely Independent Spanning Trees Based on Degree of Vertices
计算机科学, 2017, 44(6): 94-96. https://doi.org/10.11896/j.issn.1002-137X.2017.06.016
[5] 杨玉星,邱亚娜.
k元n维冒泡排序网络的子网排除
Sub-network Preclusion in (n,k)-bubble-sort Networks
计算机科学, 2017, 44(11): 264-267. https://doi.org/10.11896/j.issn.1002-137X.2017.11.039
[6] 师海忠,常立婷,赵媛,张欣,王海锋.
2r-正则图连通圈网络的Hamilton分解
Hamiltonian Decomposition of 2r-regular Graph Connected Cycles Networks
计算机科学, 2016, 43(Z11): 304-307. https://doi.org/10.11896/j.issn.1002-137X.2016.11A.071
[7] 师海忠.
几类新的笛卡尔乘积互连网络
Some New Cartesian Product Interconnection Networks
计算机科学, 2013, 40(Z6): 265-270.
[8] 师海忠.
互连网络的新模型:多部群论模型
New Model for Interconnection Networks:Multipartite Group-theoretic Model
计算机科学, 2013, 40(9): 21-24.
[9] 师海忠,王国亮,马继勇,侯斐斐.
完全对换网络的一簇猜想
One Variety Conjectures of Complete-transposition Network
计算机科学, 2012, 39(Z6): 404-407.
[10] 李勇,樊建席,王喜,周吴军.
LHL-立方体互连网络及其性质
LHL-cube Interconnection Networks and their Properties
计算机科学, 2010, 37(8): 83-87.
[11] 梁家荣,花仁杰.
具有失效链路的star网络可靠性分析
Reliability Analysis of star Network with Link Failures
计算机科学, 2010, 37(6): 106-110.
[12] .
代数图论方法在并行处理中的应用研究

计算机科学, 2008, 35(11): 67-69.
[13] .
基三分层互连网络和2-D Mesh的比较

计算机科学, 2007, 34(9): 253-255.
[14] 李涛 陈宇明 赵精龙 倪长顺 杨愚鲁.
集群高速互连网络分析

计算机科学, 2005, 32(10): 20-22.
[15] 曾庆华 陈天麒.
可扩展并行计算机系统结构和发展现状

计算机科学, 2003, 30(9): 158-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!