[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Bachelor 2020/2021

Dealing With Missing Data

Area of studies: Fundamental and Applied Linguistics
Delivered by: School of Linguistics
When: 4 year, 3 module
Mode of studies: distance learning
Instructors: Yury Lander
Language: English
ECTS credits: 3
Contact hours: 2

Course Syllabus

Abstract

This course will cover the steps used in weighting sample surveys, including methods for adjusting for nonresponse and using data external to the survey for calibration. Among the techniques discussed are adjustments using estimated response propensities, poststratification, raking, and general regression estimation. Alternative techniques for imputing values for missing items will be discussed. For both weighting and imputation, the capabilities of different statistical software packages will be covered, including R®, Stata®, and SAS®.
Learning Objectives

Learning Objectives

  • to teach students the steps used in weighting sample surveys, including methods for adjusting for nonresponse and using data external to the survey for calibration
  • to show the capabilities of different statistical packages for weighting and imputation
Expected Learning Outcomes

Expected Learning Outcomes

  • Understand the techniques of adjustments using estimated response propensities, poststratification, raking, and general regression estimation
  • Understand the use of R, Stata and SAS
Course Contents

Course Contents

  • Dealing With Missing Data
Assessment Elements

Assessment Elements

  • non-blocking Оценка за курс на Coursera
  • non-blocking Собеседование с академическим руководителем
  • non-blocking Оценка за курс на Coursera
  • non-blocking Собеседование с академическим руководителем
Interim Assessment

Interim Assessment

  • Interim assessment (3 module)
    Рассчет оценки в соответствии с баллами, набранными на онлайн-платформе: 95-100 %: 10 85-94 %: 9 75-84 %: 8 65-74 %: 7 55-64 %: 6 45-54 %: 5 35-44 %: 4 25-34 %: 3 15-24 %: 2 5-14 %: 1 < 4 %: 0
Bibliography

Bibliography

Recommended Core Bibliography

  • Мастицкий С.Э., Шитиков В.К. - Статистический анализ и визуализация данных с помощью R - Издательство "ДМК Пресс" - 2015 - 496с. - ISBN: 978-5-97060-301-7 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/73072

Recommended Additional Bibliography

  • Джеймс Г., Уиттон Д., Хасти Т. - Введение в статистическое обучение с примерами на языке R - Издательство "ДМК Пресс" - 2017 - 456с. - ISBN: 978-5-97060-495-3 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/93580