[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3654777.3676453acmotherconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article
Open access

Hydroptical Thermal Feedback: Spatial Thermal Feedback Using Visible Lights and Water

Published: 11 October 2024 Publication History

Abstract

We control the temperature of materials in everyday interactions, recognizing temperature’s important influence on our bodies, minds, and experiences. However, thermal feedback is an under-explored modality in human-computer interaction partly due to its limited temporal (slow) and spatial (small-area and non-moving) capabilities. We introduce hydroptical thermal feedback, a spatial thermal feedback method that works by applying visible lights on body parts in water. Through physical measurements and psychophysical experiments, our results show: (1) Humans perceive thermal sensations when visible lights are cast on the skin under water, and perceived warmth is greater for lights with shorter wavelengths, (2) temporal capabilities, (3) apparent motion (spatial) of warmth and coolness sensations, and (4) hydroptical thermal feedback can support the perceptual illusion that the water itself is warmer. We propose applications, including virtual reality (VR), shared water experiences, and therapies. Overall, this paper contributes hydroptical thermal feedback as a novel method, empirical results demonstrating its unique capabilities, proposed applications, and design recommendations for using hydroptical thermal feedback. Our method introduces controlled, spatial thermal perceptions to water experiences.

Supplemental Material

MP4 File
Video figure

References

[1]
Ajmal, Tananant Boonya-Ananta, Andres J. Rodriguez, V. N. Du Le, and Jessica C. Ramella-Roman. 2021. Monte Carlo Analysis of Optical Heart Rate Sensors in Commercial Wearables: The Effect of Skin Tone and Obesity on the Photoplethysmography (PPG) Signal. Biomedical Optics Express 12, 12 (Nov. 2021), 7445–7457. https://doi.org/10.1364/BOE.439893
[2]
Jas Brooks, Steven Nagels, and Pedro Lopes. 2020. Trigeminal-Based Temperature Illusions. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu HI USA, 1–12. https://doi.org/10.1145/3313831.3376806
[3]
AC Brown. 1989. Somatic sensation: Peripheral aspects. Textbook of Physiology 1 (1989), 298–313.
[4]
Harold E. Burtt. 1917. Tactual Illusions of Movement. Journal of Experimental Psychology 2, 5 (1917), 371–385. https://doi.org/10.1037/h0074614
[5]
Shaoyu Cai, Pingchuan Ke, Takuji Narumi, and Kening Zhu. 2020. ThermAirGlove: A Pneumatic Glove for Thermal Perception and Material Identification in Virtual Reality. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)(IEEE VR ’20). IEEE, Atlanta, GA, USA, 248–257. https://doi.org/10.1109/VR46266.2020.00044
[6]
George Chernyshov, Kirill Ragozin, Cedric Caremel, and Kai Kunze. 2018. Hand Motion Prediction for Just-in-Time Thermo-Haptic Feedback. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology(VRST ’18). Association for Computing Machinery, New York, NY, USA, 1–2. https://doi.org/10.1145/3281505.3281573
[7]
Emily S. Cramer, Brendan B. Matkin, and Alissa N. Antle. 2016. Embodying Alternate Attitudes: Design Opportunities for Physical Interfaces in Persuasive Gaming Experiences. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction(TEI ’16). Association for Computing Machinery, New York, NY, USA, 404–409. https://doi.org/10.1145/2839462.2856525
[8]
Ian Darian-Smith. 2011. Thermal Sensibility. John Wiley & Sons, Ltd, 879–913. https://doi.org/10.1002/cphy.cp010319 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cphy.cp010319
[9]
Paul H. Dietz, Gabriel Reyes, and David Kim. 2014. The PumpSpark Fountain Development Kit. In Proceedings of the 2014 Conference on Designing Interactive Systems(DIS ’14). Association for Computing Machinery, New York, NY, USA, 259–266. https://doi.org/10.1145/2598510.2598599
[10]
J. Dionisio. 1997. Virtual Hell: A Trip through the Flames. IEEE Computer Graphics and Applications 17, 3 (May 1997), 11–14. https://doi.org/10.1109/38.586012
[11]
Austin Erickson, Gerd Bruder, Pamela J. Wisniewski, and Gregory F. Welch. 2020. Examining Whether Secondary Effects of Temperature-Associated Virtual Stimuli Influence Subjective Perception of Duration. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Atlanta, GA, USA, 493–499. https://doi.org/10.1109/VR46266.2020.00070
[12]
Ivan Ezquerra-Romano, Maansib Chowdhury, Caterina Maria Leone, Gian Domenico Iannetti, and Patrick Haggard. 2023. A Novel Method to Selectively Elicit Cold Sensations without Touch. Journal of Neuroscience Methods 385 (Feb. 2023), 109763. https://doi.org/10.1016/j.jneumeth.2022.109763
[13]
Esther Foo, Nika R. Gagliardi, Nicholas Schleif, and Lucy E. Dunne. 2017. Toward the Development of Customizable Textile-Integrated Thermal Actuators. In Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers(UbiComp ’17). ACM, Maui Hawaii, 29–32. https://doi.org/10.1145/3123024.3123160
[14]
C J Fowler, K Sitzoglou, Z Ali, and P Halonen. 1988. The Conduction Velocities of Peripheral Nerve Fibres Conveying Sensations of Warming and Cooling.Journal of Neurology, Neurosurgery & Psychiatry 51, 9 (Sept. 1988), 1164–1170. https://doi.org/10.1136/jnnp.51.9.1164
[15]
H Fruhstorfer, U PFAFF, and H GUTH. 1972. THERMAL REACTION-TIME AS A FUNCTION OF STIMULATION SITE. In PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, Vol. 335. SPRINGER, NEW YORK, NY, USA, R49–+.
[16]
Simon Gallo, Lucian Cucu, Nicolas Thevenaz, Ali Sengül, and Hannes Bleuler. 2014. Design and Control of a Novel Thermo-Tactile Multimodal Display. In 2014 IEEE Haptics Symposium (HAPTICS)(IEEE Haptics ’14). IEEE, Houston, TX, USA, 75–81. https://doi.org/10.1109/HAPTICS.2014.6775436
[17]
K. S. Lasith Gunawardena, Koki Kimura, and Masahito Hirakawa. 2014. SensorTank: An Interactive Water Vessel. Journal of Information Processing 22, 3 (2014), 547–555. https://doi.org/10.2197/ipsjjip.22.547
[18]
Sebastian Günther, Florian Müller, Dominik Schön, Omar Elmoghazy, Max Mühlhäuser, and Martin Schmitz. 2020. Therminator: Understanding the Interdependency of Visual and On-Body Thermal Feedback in Virtual Reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu HI USA, 1–14. https://doi.org/10.1145/3313831.3376195
[19]
Takumi Hamazaki, Taiki Takami, Keigo Ushiyama, Izumi Mizoguchi, and Hiroyuki Kajimoto. 2024. ALCool: Utilizing Alcohol’s Evaporative Cooling for Ubiquitous Cold Sensation Feedback. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’24). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3613904.3642113
[20]
Ping-Hsuan Han, Yang-Sheng Chen, Chiao-En Hsieh, Hao-Cheng Wang, and Yi-Ping Hung. 2019. Hapmosphere: Simulating the Weathers for Walking Around in Immersive Environment with Haptics Feedback. In 2019 IEEE World Haptics Conference (WHC)(WHC ’19). IEEE, Tokyo, Japan, 247–252. https://doi.org/10.1109/WHC.2019.8816140
[21]
Ping-Hsuan Han, Tzu-Hua Wang, and Chien-Hsing Chou. 2023. GroundFlow: Liquid-based Haptics for Simulating Fluid on the Ground in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics 29, 5 (May 2023), 2670–2679. https://doi.org/10.1109/TVCG.2023.3247073
[22]
Teng Han, Fraser Anderson, Pourang Irani, and Tovi Grossman. 2018. HydroRing: Supporting Mixed Reality Haptics Using Liquid Flow. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology(UIST ’18). ACM, Berlin Germany, 913–925. https://doi.org/10.1145/3242587.3242667
[23]
James D. Hardy and Theodore W. Oppel. 1937. STUDIES IN TEMPERATURE SENSATION. III. THE SENSITIVITY OF THE BODY TO HEAT AND THE SPATIAL SUMMATION OF THE END ORGAN RESPONSES. Journal of Clinical Investigation 16, 4 (July 1937), 533–540. https://doi.org/10.1172/JCI100879
[24]
Seiya Hirai and Norihisa Miki. 2019. A Thermal Tactile Sensation Display with Controllable Thermal Conductivity. Micromachines 10, 6 (June 2019), 359. https://doi.org/10.3390/mi10060359
[25]
Kenta Hokoyama, Yoshihiro Kuroda, Ginga Kato, Kiyoshi Kiyokawa, and Haruo Takemura. 2017. Mugginess Sensation: Exploring Its Principle and Prototype Design. In 2017 IEEE World Haptics Conference (WHC). IEEE, Munich, Germany, 563–568. https://doi.org/10.1109/WHC.2017.7989963
[26]
Sahngki Hong, Yue Gu, Joon Kyo Seo, Joseph Wang, Ping Liu, Y. Shirley Meng, Sheng Xu, and Renkun Chen. 2019. Wearable Thermoelectrics for Personalized Thermoregulation. Science Advances 5, 5 (May 2019), eaaw0536. https://doi.org/10.1126/sciadv.aaw0536
[27]
Arata Horie, Zendai Kashino, Hideki Shimobayashi, and Masahiko Inami. 2021. Two-Dimensional Moving Phantom Sensation Created by Rotational Skin Stretch Distribution. In 2021 IEEE World Haptics Conference (WHC). IEEE, Virtual, 139–144. https://doi.org/10.1109/WHC49131.2021.9517252
[28]
Arata Horie, Ryo Murata, Zendai Kashino, and Masahiko Inami. 2022. Seeing Is Feeling: A Novel Haptic Display for Wearer-Observer Mutual Haptic Understanding. In SIGGRAPH Asia 2022 Emerging Technologies(SA ’22). Association for Computing Machinery, New York, NY, USA, 1–2. https://doi.org/10.1145/3550471.3558400
[29]
Keisuke Hoshino, Masahiro Koge, Taku Hachisu, Ryo Kodama, and Hiroyuki Kajimoto. 2015. Jorro Beat: Shower Tactile Stimulation Device in the Bathroom. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems(CHI EA ’15). Association for Computing Machinery, New York, NY, USA, 1675–1680. https://doi.org/10.1145/2702613.2732841
[30]
Felix Hülsmann, Julia Fröhlich, Nikita Mattar, and Ipke Wachsmuth. 2014. Wind and Warmth in Virtual Reality: Implementation and Evaluation. In Proceedings of the 2014 Virtual Reality International Conference(VRIC ’14). ACM, Laval France, 1–8. https://doi.org/10.1145/2617841.2620712
[31]
Sosuke Ichihashi, Arata Horie, Masaharu Hirose, Zendai Kashino, Shigeo Yoshida, and Masahiko Inami. 2021. High-Speed Non-Contact Thermal Display Using Infrared Rays and Shutter Mechanism. In Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers. ACM, Virtual USA, 565–569. https://doi.org/10.1145/3460418.3480160
[32]
Sosuke Ichihashi, Arata Horie, Masaharu Hirose, Zendai Kashino, Shigeo Yoshida, Sohei Wakisaka, and Masahiko Inami. 2022. ThermoBlinds: Non-Contact, Highly Responsive Thermal Feedback for Thermal Interaction. In ACM SIGGRAPH 2022 Emerging Technologies(SIGGRAPH ’22). Association for Computing Machinery, New York, NY, USA, 1–2. https://doi.org/10.1145/3532721.3535569
[33]
S. Ino, S. Shimizu, T. Odagawa, M. Sato, M. Takahashi, T. Izumi, and T. Ifukube. 1993. A Tactile Display for Presenting Quality of Materials by Changing the Temperature of Skin Surface. In Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication. IEEE, Tokyo, Japan, 220–224. https://doi.org/10.1109/ROMAN.1993.367718
[34]
Daisuke Iwai, Mei Aoki, and Kosuke Sato. 2019. Non-Contact Thermo-Visual Augmentation by IR-RGB Projection. IEEE Transactions on Visualization and Computer Graphics 25, 4 (April 2019), 1707–1716. https://doi.org/10.1109/TVCG.2018.2820121
[35]
Dhruv Jain, Misha Sra, Jingru Guo, Rodrigo Marques, Raymond Wu, Justin Chiu, and Chris Schmandt. 2016. Immersive Terrestrial Scuba Diving Using Virtual Reality. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. ACM, San Jose California USA, 1563–1569. https://doi.org/10.1145/2851581.2892503
[36]
L.A. Jones and H.-N. Ho. 2008. Warm or Cool, Large or Small? The Challenge of Thermal Displays. IEEE Transactions on Haptics 1, 1 (Jan. 2008), 53–70. https://doi.org/10.1109/TOH.2008.2
[37]
Lynette A. Jones and Hong Z. Tan. 2013. Application of Psychophysical Techniques to Haptic Research. IEEE Transactions on Haptics 6, 3 (July 2013), 268–284. https://doi.org/10.1109/TOH.2012.74
[38]
Jae-Hoon Jun, Jong-Rak Park, Sung-Phil Kim, Young Min Bae, Jang-Yeon Park, Hyung-Sik Kim, Seungmoon Choi, Sung Jun Jung, Seung Hwa Park, Dong-Il Yeom, Gu-In Jung, Ji-Sun Kim, and Soon-Cheol Chung. 2015. Laser-Induced Thermoelastic Effects Can Evoke Tactile Sensations. Scientific Reports 5, 1 (June 2015), 11016. https://doi.org/10.1038/srep11016
[39]
Takaaki Kamigaki, Shun Suzuki, and Hiroyuki Shinoda. 2020. Noncontact Thermal and Vibrotactile Display Using Focused Airborne Ultrasound. In Haptics: Science, Technology, Applications, Ilana Nisky, Jess Hartcher-O’Brien, Michaël Wiertlewski, and Jeroen Smeets (Eds.). Vol. 12272. Springer International Publishing, Cham, 271–278. https://doi.org/10.1007/978-3-030-58147-3_30
[40]
Shoko Kanaya, Yuka Matsushima, and Kazuhiko Yokosawa. 2012. Does Seeing Ice Really Feel Cold? Visual-Thermal Interaction under an Illusory Body-Ownership. PLOS ONE 7, 11 (Nov. 2012), e47293. https://doi.org/10.1371/journal.pone.0047293
[41]
Kunihiro Kato, Hiroki Ishizuka, Hiroyuki Kajimoto, and Homei Miyashita. 2018. Double-Sided Printed Tactile Display with Electro Stimuli and Electrostatic Forces and Its Assessment. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3174024
[42]
D. R. KENSHALO. 1976. CORRELATIONS OF TEMPERATURE SENSITIVITY IN MAN AND MONKEY, A FIRST APPROXIMATION. In Sensory Functions of the Skin in Primates, Yngve Zotterman (Ed.). Pergamon, Oxford, UK, 305–330. https://doi.org/10.1016/B978-0-08-021208-1.50028-X
[43]
Lawrence H. Kim, Pablo Castillo, Sean Follmer, and Ali Israr. 2019. VPS Tactile Display: Tactile Information Transfer of Vibration, Pressure, and Shear. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 2 (June 2019), 51:1–51:17. https://doi.org/10.1145/3328922
[44]
Sven Kratz and Tony Dunnigan. 2017. ThermoTouch: A New Scalable Hardware Design for Thermal Displays. In Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces(ISS ’17). ACM, Brighton United Kingdom, 132–141. https://doi.org/10.1145/3132272.3134133
[45]
Tadatoshi Kurogi, Yuji Yonehara, Genki Sago, Masatoshi Shimada, Takeshi Fujiwara, and Roshan Lalintha Peiris. 2020. Small, Soft, Thin, Lightweight and Flexible Tactile Display Enabling to Provide Multiple Mechanical Stimuli. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems(CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3334480.3383010
[46]
A. Lecuyer, P. Mobuchon, C. Megard, J. Perret, C. Andriot, and J.-P. Colinot. 2003. HOMERE: A Multimodal System for Visually Impaired People to Explore Virtual Environments. In IEEE Virtual Reality, 2003. Proceedings.(IEEE VR ’03). IEEE Comput. Soc, Los Angeles, CA, USA, 251–258. https://doi.org/10.1109/VR.2003.1191147
[47]
Yuhu Liu, Satoshi Nishikawa, Young ah Seong, Ryuma Niiyama, and Yasuo Kuniyoshi. 2021. ThermoCaress: A Wearable Haptic Device with Illusory Moving Thermal Stimulation. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems(CHI ’21). ACM, Yokohama Japan, 1–12. https://doi.org/10.1145/3411764.3445777
[48]
Jasmine Lu, Ziwei Liu, Jas Brooks, and Pedro Lopes. 2021. Chemical Haptics: Rendering Haptic Sensations via Topical Stimulants. In The 34th Annual ACM Symposium on User Interface Software and Technology(UIST ’21). Association for Computing Machinery, New York, NY, USA, 239–257. https://doi.org/10.1145/3472749.3474747
[49]
Koyo Makino, Jiayi Xu, Akiko Kaneko, Naoto Ienaga, and Yoshihiro Kuroda. 2023. Spatially Continuous Non-Contact Cold Sensation Presentation Based on Low-Temperature Airflows. In 2023 IEEE World Haptics Conference (WHC). IEEE, Delft, Netherlands, 223–229. https://doi.org/10.1109/WHC56415.2023.10224498
[50]
LE Marks, JC Stevens, and SJ Tepper. 1976. Interaction of Spatial and Temporal Summation in the Warmth Sense. Sensory processes 1, 1 (June 1976), 87—98.
[51]
Takafumi Morita, Yu Kuwajima, Ayato Minaminosono, Shingo Maeda, and Yasuaki Kakehi. 2022. HydroMod : Constructive Modules for Prototyping Hydraulic Physical Interfaces. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems(CHI ’22). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3491102.3502096
[52]
Florian ‘Floyd’ Mueller, Maria F. Montoya, Sarah Jane Pell, Leif Oppermann, Mark Blythe, Paul H Dietz, Joe Marshall, Scott Bateman, Ian Smith, Swamy Ananthanarayan, Ali Mazalek, Alexander Verni, Alexander Bakogeorge, Mathieu Simonnet, Kirsten Ellis, Nathan Arthur Semertzidis, Winslow Burleson, John Quarles, Steve Mann, Chris Hill, Christal Clashing, and Don Samitha Elvitigala. 2024. Grand Challenges in WaterHCI. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’24). Association for Computing Machinery, New York, NY, USA, 1–18. https://doi.org/10.1145/3613904.3642052
[53]
Mitsuru Nakajima, Keisuke Hasegawa, Yasutoshi Makino, and Hiroyuki Shinoda. 2021. Spatiotemporal Pinpoint Cooling Sensation Produced by Ultrasound-Driven Mist Vaporization on Skin. IEEE Transactions on Haptics 14, 4 (Oct. 2021), 874–884. https://doi.org/10.1109/TOH.2021.3086516
[54]
Mitsuru Nakajima, Yasutoshi Makino, and Hiroyuki Shinoda. 2020. Remote Cooling Sensation Presentation Controlling Mist in Midair. In 2020 IEEE/SICE International Symposium on System Integration (SII). IEEE, Honolulu, HI, USA, 1238–1241. https://doi.org/10.1109/SII46433.2020.9025959
[55]
Jinhyeok Oh, Suin Kim, Sangyeop Lee, Seongmin Jeong, Seung Hwan Ko, and Joonbum Bae. 2021. A Liquid Metal Based Multimodal Sensor and Haptic Feedback Device for Thermal and Tactile Sensation Generation in Virtual Reality. Advanced Functional Materials 31, 39 (Sept. 2021), 2007772. https://doi.org/10.1002/adfm.202007772
[56]
Gunhyuk Park and Seungmoon Choi. 2018. Tactile Information Transmission by 2D Stationary Phantom Sensations. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173832
[57]
Ardem Patapoutian, Andrea M. Peier, Gina M. Story, and Veena Viswanath. 2003. ThermoTRP Channels and beyond: Mechanisms of Temperature Sensation. Nature Reviews Neuroscience 4, 7 (July 2003), 529–539. https://doi.org/10.1038/nrn1141
[58]
Roshan Lalitha Peiris, Yuan-Ling Feng, Liwei Chan, and Kouta Minamizawa. 2019. ThermalBracelet: Exploring Thermal Haptic Feedback Around the Wrist. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems(CHI ’19). ACM, Glasgow Scotland Uk, 1–11. https://doi.org/10.1145/3290605.3300400
[59]
Roshan Lalintha Peiris, Wei Peng, Zikun Chen, Liwei Chan, and Kouta Minamizawa. 2017. ThermoVR: Exploring Integrated Thermal Haptic Feedback with Head Mounted Displays. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems(CHI ’17). Association for Computing Machinery, New York, NY, USA, 5452–5456. https://doi.org/10.1145/3025453.3025824
[60]
Robin M. Pope and Edward S. Fry. 1997. Absorption Spectrum (380–700 Nm) of Pure Water. II. Integrating Cavity Measurements. Applied Optics 36, 33 (Nov. 1997), 8710–8723. https://doi.org/10.1364/AO.36.008710
[61]
Lara Rahal, Jongeun Cha, and Abdulmotaleb El Saddik. 2009. Continuous Tactile Perception for Vibrotactile Displays. In 2009 IEEE International Workshop on Robotic and Sensors Environments. IEEE, Lecco, Italy, 86–91. https://doi.org/10.1109/ROSE.2009.5355986
[62]
Hendrik Richter, Felix Manke, and Moriel Seror. 2013. LiquiTouch: Liquid as a Medium for Versatile Tactile Feedback on Touch Surfaces. In Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction(TEI ’13). Association for Computing Machinery, New York, NY, USA, 315–318. https://doi.org/10.1145/2460625.2460678
[63]
Lorna Roth. 2019. Making Skin Visible through Liberatory Design. In Captivating Technology, Ruha Benjamin (Ed.). Duke University Press, 275–307. https://doi.org/10.1215/9781478004493-016
[64]
Taiga Saito, Jianyao Zhang, Takayuki Kameoka, and Hiroyuki Kajimoto. 2021. Thermal Sensation on Forehead Using Electrical Stimulation: Thermal Sensation Using Electrical Stimulation. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems(CHI EA ’21). Association for Computing Machinery, New York, NY, USA, 1–5. https://doi.org/10.1145/3411763.3451724
[65]
Masamichi Sakaguchi, Kazuki Imai, and Kyohei Hayakawa. 2014. Development of High-Speed Thermal Display Using Water Flow. In Human Interface and the Management of Information. Information and Knowledge Design and Evaluation(Lecture Notes in Computer Science), Sakae Yamamoto (Ed.). Springer International Publishing, Cham, 233–240. https://doi.org/10.1007/978-3-319-07731-4_24
[66]
Katsunari Sato, Takashi Maeno, and Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8526, Japan. 2013. Presentation of Rapid Temperature Change Using Spatially Divided Hot and Cold Stimuli. Journal of Robotics and Mechatronics 25, 3 (June 2013), 497–505. https://doi.org/10.20965/jrm.2013.p0497
[67]
Carl E. Sherrick and Ronald Rogers. 1966. Apparent Haptic Movement. Perception & Psychophysics 1, 3 (May 1966), 175–180. https://doi.org/10.3758/BF03210054
[68]
Heesook Shin, Junyoung Lee, Junseok Park, Youngjae Kim, Hyunjoo Oh, and Taehwa Lee. 2007. A Tactile Emotional Interface for Instant Messenger Chat. In Human Interface and the Management of Information. Interacting in Information Environments, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Michael J. Smith, and Gavriel Salvendy (Eds.). Vol. 4558. Springer Berlin Heidelberg, Berlin, Heidelberg, 166–175. https://doi.org/10.1007/978-3-540-73354-6_19
[69]
Yatharth Singhal, Haokun Wang, Hyunjae Gil, and Jin Ryong Kim. 2021. Mid-Air Thermo-Tactile Feedback Using Ultrasound Haptic Display. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology(VRST ’21). ACM, Osaka Japan, 1–11. https://doi.org/10.1145/3489849.3489889
[70]
Katherine W Song, Aditi Maheshwari, Eric M Gallo, Andreea Danielescu, and Eric Paulos. 2022. Towards Decomposable Interactive Systems: Design of a Backyard-Degradable Wireless Heating Interface. In CHI Conference on Human Factors in Computing Systems(CHI ’22). ACM, New Orleans LA USA, 1–12. https://doi.org/10.1145/3491102.3502007
[71]
Daniel Spelmezan, Deepak Ranjan Sahoo, and Sriram Subramanian. 2017. Sparkle: Hover Feedback with Touchable Electric Arcs. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems(CHI ’17). Association for Computing Machinery, New York, NY, USA, 3705–3717. https://doi.org/10.1145/3025453.3025782
[72]
Joseph C. Stevens and Kenneth K. Choo. 1998. Temperature Sensitivity of the Body Surface over the Life Span. Somatosensory & Motor Research 15, 1 (Jan. 1998), 13–28. https://doi.org/10.1080/08990229870925
[73]
Joseph C. Stevens, William C. Okulicz, and Lawrence E. Marks. 1973. Temporal Summation at the Warmth Threshold. Perception & Psychophysics 14, 2 (June 1973), 307–312. https://doi.org/10.3758/BF03212396
[74]
Richard H. Taus, Joseph C. Stevens, and Lawrence E. Marks. 1975. Spatial Localization of Warmth. Perception & Psychophysics 17, 2 (March 1975), 194–196. https://doi.org/10.3758/BF03203885
[75]
Yutaka Tokuda and Tatsuya Kobayashi. 2024. Painting Inferno: Novel Heat and Stiffness Control Methods with Carbon Nanomaterial Conductive Heating Paint. In Proceedings of the CHI Conference on Human Factors in Computing Systems(CHI ’24). Association for Computing Machinery, New York, NY, USA, 1–17. https://doi.org/10.1145/3613904.3642226
[76]
Sheng-Hao Tseng, Paulo Bargo, Anthony Durkin, and Nikiforos Kollias. 2009. Chromophore Concentrations, Absorption and Scattering Properties of Human Skin in-Vivo. Optics Express 17, 17 (Aug. 2009), 14599–14617. https://doi.org/10.1364/OE.17.014599
[77]
AJH Vendrik and EG Eijkman. 1968. Psychophysical Properties Determined with Internal Noise. The skin senses (1968), 178–193.
[78]
Yida Wang and Yi-Chao Chen. 2023. Non-Contact Thermal Haptics for VR. In Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing(UbiComp/ISWC ’23 Adjunct). Association for Computing Machinery, New York, NY, USA, 386–390. https://doi.org/10.1145/3594739.3610724
[79]
Joseph Wareing, Glyn Lawson, Che Abdullah, and Tessa Roper. 2018. User Perception of Heat Source Location for a Multisensory Fire Training Simulation. In 2018 10th Computer Science and Electronic Engineering (CEEC). IEEE, Colchester, UK, 214–218. https://doi.org/10.1109/CEEC.2018.8674211
[80]
Peter Weir, Christian Sandor, Matt Swoboda, Thanh Nguyen, Ulrich Eck, Gerhard Reitmayr, and Arindam Dey. 2012. BurnAR: Feel the Heat. In 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, Atlanta, GA, USA, 331–332. https://doi.org/10.1109/ISMAR.2012.6402599
[81]
Reto Wettach, Christian Behrens, Adam Danielsson, and Thomas Ness. 2007. A Thermal Information Display for Mobile Applications. In Proceedings of the 9th International Conference on Human Computer Interaction with Mobile Devices and Services(MobileHCI ’07). Association for Computing Machinery, New York, NY, USA, 182–185. https://doi.org/10.1145/1377999.1378004
[82]
Alexander Wilberz, Dominik Leschtschow, Christina Trepkowski, Jens Maiero, Ernst Kruijff, and Bernhard Riecke. 2020. FaceHaptics: Robot Arm Based Versatile Facial Haptics for Immersive Environments. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems(CHI ’20). ACM, Honolulu HI USA, 1–14. https://doi.org/10.1145/3313831.3376481
[83]
J Winzen, F Albers, and C Marggraf-Micheel. 2014. The Influence of Coloured Light in the Aircraft Cabin on Passenger Thermal Comfort. Lighting Research & Technology 46, 4 (Aug. 2014), 465–475. https://doi.org/10.1177/1477153513484028
[84]
Jiayi Xu, Shoichi Hasegawa, Kiyoshi Kiyokawa, Naoto Ienaga, and Yoshihiro Kuroda. 2023. Integration of Independent Heat Transfer Mechanisms for Non-Contact Cold Sensation Presentation With Low Residual Heat. IEEE Transactions on Haptics 16, 4 (Oct. 2023), 770–784. https://doi.org/10.1109/TOH.2023.3324754
[85]
Hirotsugu Yamamoto, Shusei Ito, Tomoyuki Okamoto, Ryosuke Kujime, Kengo Fujii, Yoshiki Terashima, and Yukihiro Takeda. 2017. Aerial Display with Thermal and Acoustic Sensation. In ACM SIGGRAPH 2017 Posters(SIGGRAPH ’17). Association for Computing Machinery, New York, NY, USA, 1–2. https://doi.org/10.1145/3102163.3102245
[86]
DAVID YARNITSKY and JOSE L. OCHOA. 1991. WARM AND COLD SPECIFIC SOMATOSENSORY SYSTEMS: PSYCHOPHYSICAL THRESHOLDS, REACTION TIMES AND PERIPHERAL CONDUCTION VELOCITIES. Brain 114, 4 (08 1991), 1819–1826. https://doi.org/10.1093/brain/114.4.1819
[87]
Gyeore Yun, Seungjae Oh, and Seungmoon Choi. 2019. Seamless Phantom Sensation Moving Across a Wide Range of Body. In 2019 IEEE World Haptics Conference (WHC). IEEE, Tokyo, Japan, 616–621. https://doi.org/10.1109/WHC.2019.8816104
[88]
Mao Zhipeng, Wu Jianfeng, Li Jianqing, Zhou Lianjie, Li Xiaomin, and Yang Yurong. 2012. A Thermal Tactile Display Device with Multiple Heat Sources. In 2012 International Conference on Industrial Control and Electronics Engineering. IEEE, Xi’an, China, 192–195. https://doi.org/10.1109/ICICEE.2012.58
[89]
Kening Zhu, Simon Perrault, Taizhou Chen, Shaoyu Cai, and Roshan Lalintha Peiris. 2019. A Sense of Ice and Fire: Exploring Thermal Feedback with Multiple Thermoelectric-Cooling Elements on a Smart Ring. International Journal of Human-Computer Studies 130 (Oct. 2019), 234–247. https://doi.org/10.1016/j.ijhcs.2019.07.003

Index Terms

  1. Hydroptical Thermal Feedback: Spatial Thermal Feedback Using Visible Lights and Water

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    UIST '24: Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology
    October 2024
    2334 pages
    ISBN:9798400706288
    DOI:10.1145/3654777
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 October 2024

    Check for updates

    Author Tags

    1. Thermal display
    2. Thermal feedback
    3. Visible light
    4. WaterHCI

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    UIST '24

    Acceptance Rates

    Overall Acceptance Rate 561 of 2,567 submissions, 22%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 294
      Total Downloads
    • Downloads (Last 12 months)294
    • Downloads (Last 6 weeks)153
    Reflects downloads up to 24 Dec 2024

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media