[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Delay-Dependent Approach to Robust H Control for Uncertain Stochastic Systems with State and Input Delays

  • Published:
Circuits, Systems & Signal Processing Aims and scope Submit manuscript

An Erratum to this article was published on 13 June 2009

Abstract

In this paper, the problem of delay-dependent robust H control for uncertain stochastic systems with state and input delays is investigated. The time delays are assumed to be bounded and time varying and the uncertainties are assumed to be norm bounded. By using the Lyapunov functional method, a new delay-dependent robust H control scheme is presented in terms of linear matrix inequalities (LMIs). Some numerical examples are given to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.K. Boukas, Stabilization of stochastic nonlinear hybrid systems. Int. J. Innov. Comput. Inf. Control 1, 131–141 (2005)

    MathSciNet  Google Scholar 

  2. B. Chen, J. Lam, S. Xu, Memory state feedback guaranteed cost control for neutral delay systems. Int. J. Innov. Comput. Inf. Control 2, 293–303 (2006)

    Article  Google Scholar 

  3. J.-D. Chen, Delay-dependent robust H control of uncertain neutral systems with state and input delays: LMI optimization approach. Chaos Solitons Fractals 33, 595–606 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Chen, Z. Guan, X. Lu, Delay-dependent exponential stability of uncertain stochastic systems with multiple delays: an LMI approach. Syst. Control Lett. 54, 547–555 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Chen, Z. Guan, X. Lu, Delay-dependent robust stabilization and H control of uncertain stochastic systems with time-varying delay. IMA J. Math. Control Inf. 21, 345–358 (2004)

    Article  MathSciNet  Google Scholar 

  6. V. Dragan, The linear quadratic optimization problem for a class of singularly perturbed stochastic systems. Int. J. Innov. Comput. Inf. Control 1, 53–63 (2005)

    Google Scholar 

  7. J. Dong, G.-H. Yang, H control for fast sampling discrete-time singularly perturbed systems. Automatica 44, 1385–1393 (2008)

    Article  Google Scholar 

  8. H. Gao, J. Lam, C. Wang, Robust energy-to-peak filter design for stochastic time-delay systems. Syst. Control Lett. 55, 101–111 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Gao, C. Wang, Delay-dependent robust H and L 2L filtering for a class of uncertain nonlinear time-delay systems. IEEE Trans. Autom. Control 48, 1661–1666 (2003)

    Article  MathSciNet  Google Scholar 

  10. Y. He, M. Wu, J.H. She, G.P. Liu, Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Syst. Control Lett. 51, 57–65 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. He, Q.G. Wang, C. Lin, M. Wu, Delay-range-dependent stability for systems with time-varying delay. Automatica 43, 371–376 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. X. Jiang, Q.L. Han, On H control for linear systems with interval time-varying delay. Automatica 41, 2099–2106 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Kashima, Y. Yamamoto, On standard H control problems for systems with infinitely many unstable poles. Syst. Control Lett. 57, 309–314 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Y.S. Lee, Y.S. Moon, W.H. Kwon, P.G. Park, Delay-dependent robust H control for uncertain systems with a state-delay. Automatica 40, 65–72 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. X. Mao, Stochastic Differential Equations and Their Applications (Horwood, Chichester, 1997)

    MATH  Google Scholar 

  16. X. Mao, N. Koroleva, A. Rodkina, Robust stability of uncertain stochastic differential delay equations. Syst. Control Lett. 35, 325–336 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. J.H. Park, C.L. Chen, Guaranteed cost control of time-delay chaotic systems. Chaos Solitons Fractals 27, 1011–1018 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Y.G. Sun, L. Wang, G. Xie, Delay-dependent robust stability and H control for uncertain discrete-time switched systems with mode-dependent time delays. Appl. Math. Comput. 187, 1228–1237 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Y. Wang, L. Xie, C.E. De Souza, Robust control of a class of uncertain nonlinear systems. Syst. Control Lett. 19, 139–149 (1992)

    Article  Google Scholar 

  20. Z. Wang, J. Lam, X. Liu, Stabilization of a class of stochastic nonlinear time-delay systems. J. Nonlinear Dyn. Syst. Theory 4, 357–368 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Z. Wang, F. Yang, D.W.C. Ho, X. Liu, Robust variance-constrained H control for stochastic systems with multiplicative noises. J. Math. Anal. Appl. 328, 487–502 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Z. Wang, Y. Liu, X. Liu, H filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities. Automatica 44, 268–277 (2008)

    Google Scholar 

  23. G. Wei, Z. Wang, H. Shu, J. Fang, H deconvolution filters for stochastic systems with interval uncertainties. Circuits Syst. Signal Process. 26, 495–512 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Wei, Z. Wang, H. Shu, J. Fang, Delay-dependent stabilization of stochastic interval delay systems with nonlinear disturbances. Syst. Control Lett. 56, 623–633 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Wei, Z. Wang, H. Shu, Nonlinear H control of stochastic time-delay systems with Markovian switching. Chaos Solitons Fractals 35, 442–451 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Xu, J. Lam, X. Mao, Y. Zou, A new LMI condition for delay-dependent robust stability of stochastic time-delay systems. Asian J. Control 7, 419–423 (2005)

    MathSciNet  Google Scholar 

  27. S. Xu, T. Chen, Robust H control for uncertain stochastic systems with state delay. IEEE Trans. Autom. Control 47, 2089–2094 (2002)

    Article  MathSciNet  Google Scholar 

  28. S. Xu, J. Lam, Y. Zou, New results on delay-dependent robust H control for systems with time-varying delays. Automatica 42, 343–348 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Yue, S. Won, Delay-dependent robust stability of stochastic systems with time delay and nonlinear uncertainties. Electron. Lett. 37, 992–993 (2001)

    Article  Google Scholar 

  30. D. Yue, Q.L. Hang, Delay feedback control of uncertain systems with time-varying input delay. Automatica 41, 233–240 (2005)

    Article  MATH  Google Scholar 

  31. B. Zhang, S. Zhou, S. Xu, Delay-dependent H controller design for linear neutral systems with discrete and distributed delays. Int. J. Syst. Sci. 38, 611–621 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyi Li.

Additional information

This work is partially supported by the Natural Science Foundation of China (60674055, 60774047), and the Taishan Scholar Programme of Shandong Province.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00034-009-9118-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Chen, B., Zhou, Q. et al. A Delay-Dependent Approach to Robust H Control for Uncertain Stochastic Systems with State and Input Delays. Circuits Syst Signal Process 28, 169–183 (2009). https://doi.org/10.1007/s00034-008-9075-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-008-9075-2

Keywords

Navigation