[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Subjective Evaluation of Labeling Methods for Association Rule Clustering

  • Conference paper
Advances in Soft Computing and Its Applications (MICAI 2013)

Abstract

Among the post-processing association rule approaches, clustering is an interesting one. When an association rule set is clustered, the user is provided with an improved presentation of the mined patters. The domain to be explored is structured aiming to join association rules with similar knowledge. To take advantage of this organization, it is essential that good labels be assigned to the groups, in order to guide the user during the association rule exploration process. Few works have explored and proposed labeling methods for this context. Moreover, these methods have not been explored through subjective evaluations in order to measure their quality; usually, only objective evaluations are used. This paper subjectively evaluates five labeling methods used on association rule clustering. The evaluation aims to find out the methods that presents the best results based on the analysis of the domain experts. The experimental results demonstrate that there is a disagreement between objective and subjective evaluations as reported in other works from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 207–216 (1993)

    Google Scholar 

  2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press (1996)

    Google Scholar 

  3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499 (1994)

    Google Scholar 

  4. Carvalho, V.O., Biondi, D.S., Santos, F.F., Rezende, S.O.: Labeling methods for association rule clustering. In: Proceedings of the 14th International Conference on Enterprise Information Systems, pp. 105–111 (2012)

    Google Scholar 

  5. Carvalho, V.O., Santos, F.F., Rezende, S.O.: Post-processing association rules with clustering and objective measures. In: Proceedings of the 13th International Conference on Enterprise Information Systems, pp. 54–63 (2011)

    Google Scholar 

  6. Carvalho, V.O., Santos, F.F., Rezende, S.O.: Agrupamento de regras de associação no pré-processamento e no pós-processamento: O que vale mais a pena? Technical Report 381, Instituto de Ciências Matemáticas e de Computação - ICMC - USP (2012)

    Google Scholar 

  7. Chang, J., Boyd-Graber, J.L., Gerrish, S., Wang, C., Blei, D.M.: Reading tea leaves: How humans interpret topic models. In: Neural Information Processing Systems, pp. 288–296 (2009)

    Google Scholar 

  8. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: Current status and future directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)

    Article  MathSciNet  Google Scholar 

  9. Hipp, J., Mangold, C., Güntzer, U., Nakhaeizadeh, G.: Efficient rule retrieval and postponed restrict operations for association rule mining. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 52–65. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Jorge, A.: Hierarchical clustering for thematic browsing and summarization of large sets of association rules. In: Proceedings of the 4th SIAM International Conference on Data Mining, 10 p. (2004)

    Google Scholar 

  11. Liu, B.: Association rules and sequential patterns. In: Web Data Mining, pp. 17–62 (2011)

    Google Scholar 

  12. Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, 544 p.(2009)

    Google Scholar 

  13. Moura, M.F., Rezende, S.O.: A simple method for labeling hierarchical document clusters. In: Proceedings of the 10th IASTED International Conference on Artificial Intelligence and Applications, pp. 336–371 (2010)

    Google Scholar 

  14. Natarajan, R., Shekar, B.: Interestingness of association rules in data mining: Issues relevant to e-commerce. SĀDHANĀ – Academy Proceedings in Engineering Sciences (The Indian Academy of Sciences) 30(Parts 2&3), 291–310 (2005)

    Google Scholar 

  15. de Padua, R., de Carvalho, V.O., de Souza Serapião, A.B.: Labeling association rule clustering through a genetic algorithm approach. In: Catania, B., Cerquitelli, T., Chiusano, S., Guerrini, G., Kämpf, M., Kemper, A., Novikov, B., Palpanas, T., Pokorny, J., Vakali, A. (eds.) New Trends in Databases and Information Systems. AISC, vol. 241, pp. 45–52. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  16. Popescul, A., Ungar, L.: Automatic labeling of document clusters. Unpublished manuscript (2000), http://www.cis.upenn.edu/popescul/~Publications/popescul00labeling.pdf

  17. Rathinasabapathi, R., Ramesh, G.: Comparison of association rules and decision trees for disease prediction and data mining for improved cardiac care. International Journal of Computer Science and Management Research 2, 1716–1721 (2013)

    Google Scholar 

  18. Reynolds, A.P., Richards, G., de la Iglesia, B., Rayward-Smith, V.J.: Clustering rules: A comparison of partitioning and hierarchical clustering algorithms. Journal of Mathematical Modelling and Algorithms 5(4), 475–504 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sahar, S.: Exploring interestingness through clustering: A framework. In: Proceedings of the IEEE International Conference on Data Mining, pp. 677–680 (2002)

    Google Scholar 

  20. Toivonen, H., Klemettinen, M., Ronkainen, P., Hätönen, K., Mannila, H.: Pruning and grouping discovered association rules. In: Workshop Notes of the ECML Workshop on Statistics, Machine Learning, and Knowledge Discovery in Databases, pp. 47–52 (1995)

    Google Scholar 

  21. Xu, R., Wunsch, D.: Clustering. IEEE Press Series on Computational Intelligence. Wiley (2008)

    Google Scholar 

  22. Zhao, Y., Zhang, C., Cao, L.: Post-mining of Association Rules: Techniques for Effective Knowledge Extraction, 372 p. Information Science Reference (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Padua, R., dos Santos, F.F., da Silva Conrado, M., de Carvalho, V.O., Rezende, S.O. (2013). Subjective Evaluation of Labeling Methods for Association Rule Clustering. In: Castro, F., Gelbukh, A., González, M. (eds) Advances in Soft Computing and Its Applications. MICAI 2013. Lecture Notes in Computer Science(), vol 8266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45111-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45111-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45110-2

  • Online ISBN: 978-3-642-45111-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics