[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Minimum Interference Planar Geometric Topology in Wireless Sensor Networks

  • Conference paper
Wireless Algorithms, Systems, and Applications (WASA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5682))

Abstract

The approach of using topology control to reduce interference in wireless sensor networks has attracted attention of several researchers. There are at least two definitions of interference in the literature. In a wireless sensor network the interference at a node may be caused by an edge that is transmitting data [15], or it occurs because the node itself is within the transmission range of another [3], [1], [6]. In this paper we show that the problem of assigning power to nodes in the plane to yield a planar geometric graph whose nodes have bounded interference is NP-complete under both interference definitions. Our results provide a rigorous proof for a theorem in [15] whose proof is unconvincing. They also address one of the open issues raised in [6] where Halldórsson and Tokuyama were concerned with the receiver model of node interference, and derived an \(O(\sqrt {\Delta})\) upper bound for the maximum node interference of a wireless ad hoc network in the plane (Δ is the maximum interference of the so-called uniform radius network). The question as to whether this problem is NP-complete in the 2-dimensional case was left open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bilò, D., Proietti, G.: On the Complexity of Minimizing Interference in Ad-Hoc and Sensor Networks. Theorectical Computer Science 402, 43–55 (2008)

    Google Scholar 

  2. Buchin, K.: Minimizing the Maximum Interference is Hard (2008), http://arxiv.org/abs/0802.2134

  3. Burkhart, M., von Rickenbach, P., Wattenhofer, R., Zollinger, A.: Does Topology Control Reduce Interference? In: MOBIHOC 2004, pp. 9–19 (2004)

    Google Scholar 

  4. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time Approximation Schemes for Geometric Intersection Graphs. SIAM J. Comput. 6(34), 1302–1323 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erlebach, T., van Leeuwen, E.J.: Domination in Geometric Intersection Graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 747–758. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Halldórsson, M.M., Tokuyama, T.: Minimizing Interference of a Wireless Ad-Hoc Network in a Plane. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2006. LNCS, vol. 4240, pp. 71–82. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Hunt III, D.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: NC- Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs. Journal Algorithms 2(26), 238–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Johansson, T., Carr-Motyckovaá, L.: Reducing Interference in Ad Hoc Networks Through Topology Control. In: DIALM-POMC 2005, pp. 17–23 (2005)

    Google Scholar 

  9. Lichtenstein, D.: Planar Formulae And Their Uses. SIAM J. of Compt. 11(23) (1982)

    Google Scholar 

  10. Marx, D.: Parameterized Complexity of Independence and Domination on Geometric Graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 154–165. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Moaveni-Nejad, K., Li, X.-Y.: Low-Interference Topology Control for Wireless Ad Hoc Networks. Ad Hoc and Wireless Sensor Networks 1, 41–64 (2005)

    Google Scholar 

  12. Rickenbach, P.V., Schmid, S., Wattenhofer, R., Zollinger, A.: A Roburst Interference Model for Wireless Ad-Hoc Networks. In: Proc. 19th IEEE Int. Par. and Dist. (2005)

    Google Scholar 

  13. Valiant, L.: Universality Considerations in VLSI Circuits. IEEE Trans. on Compupters C-30, 135–140 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. van Leeuwen, E.J.: Better Approximation Schemes for Disk Graphs. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 316–327. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Wu, K.-D., Liao, W.: On Constructing Low Interference Topology in Multihop Wireless Networks. Int. J. of Sensor Networks 2, 321–330 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, T.N., Huynh, D.T. (2009). Minimum Interference Planar Geometric Topology in Wireless Sensor Networks. In: Liu, B., Bestavros, A., Du, DZ., Wang, J. (eds) Wireless Algorithms, Systems, and Applications. WASA 2009. Lecture Notes in Computer Science, vol 5682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03417-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03417-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03416-9

  • Online ISBN: 978-3-642-03417-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics