[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

Given any integer d ≥ 3, let k be the smallest integer such that d < 2k log k. We prove that with high probability the chromatic number of a random d-regular graph is k, k+1, or k+2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., Moore, C.: Almost all graphs of degree 4 are 3-colorable. Journal of Computer and System Sciences 67(4), 441–471 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Achlioptas, D., Moore, C.: The asymptotic order of the k-SAT threshold. In: Proc. 43rd Foundations of Computer Science, pp. 779–788 (2002)

    Google Scholar 

  3. Achlioptas, D., Moore, C.: On the two-colorability of random hypergraphs. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 78–90. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Achlioptas, D., Naor, A.: The two possible values of the chromatic number of a random graph. In: Proc. 36th Symp. on the Theory of Computing (2004)

    Google Scholar 

  5. Bollobás, B.: Random graphs. Academic Press, London (1985)

    MATH  Google Scholar 

  6. Frieze, A., Luczak, T.: On the independence and chromatic numbers of random regular graphs. J. Combin. Theory Ser. B 54, 123–132 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Janson, S., Lucza, T., Ruciński, A.: Random Graphs. Wiley & Sons, Chichester (2000)

    MATH  Google Scholar 

  8. Krza̧ka_la, F., Pagnani, A., Weigt, M.: Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs. Preprint, cond-mat/0403725. Physical Review (to appear)

    Google Scholar 

  9. Luczak, T.: The chromatic number of random graphs. Combinatorica 11(1), 45–54 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Luczak, T.: A note on the sharp concentration of the chromatic number of random graphs. Combinatorica 11(3), 295–297 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Molloy, M.: The Chromatic Number of Sparse Random Graphs. Master’s thesis, Faculty of Mathematics, University of Waterloo (1992)

    Google Scholar 

  12. Wormald, N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics., London Mathematical Society Lecture Note Series, vol. 276, pp. 239–298. Cambridge University Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Achlioptas, D., Moore, C. (2004). The Chromatic Number of Random Regular Graphs. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2004 2004. Lecture Notes in Computer Science, vol 3122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27821-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27821-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22894-3

  • Online ISBN: 978-3-540-27821-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics