[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Navigability of complex networks

Abstract

Routing information through networks is a universal phenomenon in both natural and man-made complex systems. When each node has full knowledge of the global network connectivity, finding short communication paths is merely a matter of distributed computation. However, in many real networks, nodes communicate efficiently even without such global intelligence. Here, we show that the peculiar structural characteristics of many complex networks support efficient communication without global knowledge. We also describe a general mechanism that explains this connection between network structure and function. This mechanism relies on the presence of a metric space hidden behind an observable network. Our findings suggest that real networks in nature have underlying metric spaces that remain undiscovered. Their discovery should have practical applications in a wide range of areas where networks are used to model complex systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How hidden metric spaces influence the structure and function of complex networks.
Figure 2: Average length of greedy-routing paths.
Figure 3: Success probability of greedy routing.
Figure 4: Greedy routing in the airport network.
Figure 5: Probability that greedy routing travels to higher-degree nodes.
Figure 6: The structure of greedy-routing paths.

Similar content being viewed by others

References

  1. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  2. Newman, M. E. J. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  3. Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of Networks: From Biological Nets to the Internet and WWW. (Oxford Univ. Press, 2003).

    Book  Google Scholar 

  4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  5. Castells, M. The Rise of the Network Society (Blackwell, 1996).

    MATH  Google Scholar 

  6. Pastor-Satorras, R. & Vespignani, A. Evolution and Structure of the Internet. A Statistical Physics Approach (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  7. Watts, D. J., Dodds, P. S. & Newman, M. E. J. Identity and search in social networks. Science 296, 1302–1305 (2002).

    Article  ADS  Google Scholar 

  8. Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  9. Menczer, F. Growing and navigating the small world Web by local content. Proc. Natl Acad. Sci. USA 99, 14014–14019 (2002).

    Article  ADS  Google Scholar 

  10. Leicht, E. A., Holme, P. & Newman, M. E. J. Vertex similarity in networks. Phys. Rev. E 73, 026120 (2006).

    Article  ADS  Google Scholar 

  11. Crandall, D., Cosley, D., Huttenlocher, D., Kleinberg, J. & Suri, S. Proc. ACM Int. Conf. on Knowledge Discovery and Data Mining (ACM, 2008).

    Google Scholar 

  12. Clauset, A., Moore, C. & Newman, M. E. J. Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008).

    Article  ADS  Google Scholar 

  13. Ángeles Serrano, M., Krioukov, D. & Boguñá, M. Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100, 078701 (2008).

    Article  ADS  Google Scholar 

  14. Travers, J. & Milgram, S. An experimental study of the small world problem. Sociometry 32, 425–443 (1969).

    Article  Google Scholar 

  15. Watts, D. J. & Strogatz, S. H. Collective dynamics of small-world networks. Nature 393, 440–442 (1998).

    Article  ADS  Google Scholar 

  16. Kleinberg, J. Navigation in a small world. Nature 406, 845 (2000).

    Article  ADS  Google Scholar 

  17. Kleinberg, J. STOC ’00: Proc. Thirty-Second Annual ACM Symp. on Theory of Computing 163–170 (ACM, 2000).

    Book  Google Scholar 

  18. Kleinberg, J. M. in Small-World Phenomena and the Dynamics of Information (eds Dietterich, T. G., Becker, S. & Ghahramani, Z.) 431–438 (MIT Press, 2001).

    Google Scholar 

  19. Manku, G. S., Naor, M. & Wieder, U. Proc. 36th ACM Symp. on Theory of Computing (STOC) 54–63 (ACM, 2004).

    MATH  Google Scholar 

  20. Martel, C. 23rd ACM Symp. Principles of Distributed Computing (PODC) 179–188 (ACM, 2004).

    Google Scholar 

  21. Nguyen, V. & Martel, C. SODA ’05: Proc. Sixteenth Annual ACM-SIAM Symp. on Discrete Algorithms 311–320 (Society for Industrial and Applied Mathematics, 2005).

    Google Scholar 

  22. Nguyen, V. & Martel, C. Proc. Fourth Workshop on Analytic Algorithmics and Combinatorics 213–227 (SIAM, 2008).

    Google Scholar 

  23. Simsek, Ö. & Jensen, D. in Proc. Nineteenth Int. Joint Conf. in Artificial Intelligence (eds Kaelbling, L. P. & Saffiotti, A.) 304–310 (Professional Book Center, 2005).

    Google Scholar 

  24. Lebhar, E. & Schabanel, N. in Proc. 31st Int. Colloquium on Automata, Languages and Programming Vol. 3142 (eds Díaz, J., Karhumäki, J., Lepistö, A. & Sannella, D.) 894–905 (Lecture Notes in Computer Science, Springer, 2004).

    Book  Google Scholar 

  25. Fraigniaud, P. in Proc of the 13th Annual European Symposium Vol. 3669 (eds Brodal, G. S. & Leonardi, S.) 791–802 (Lecture Notes in Computer Science, Springer, 2005).

    Google Scholar 

  26. Fraigniaud, P., Gavoille, C. & Paul, C. Eclecticism shrinks even small worlds. Distrib. Comput. 18, 279–291 (2006).

    Article  Google Scholar 

  27. Fraigniaud, P., Gavoille, C., Kosowski, A., Lebhar, E. & Lotker, Z. in Proc. Nineteenth Annual ACM Symp. on Parallel Algorithms and Architectures (eds Gibbons, P. B. & Scheideler, C.) 1–7 (ACM, 2007).

    Google Scholar 

  28. Fraigniaud, P. & Gavoille, C. in Proc. Twentieth Annual Symposium on Parallelism in Algorithms and Architectures (eds auf der Heide, F. M. & Shavit, N.) 62–69 (ACM, 2008) SPAA.

    Google Scholar 

  29. Chaintreau, A., Fraigniaud, P. & Lebhar, E. in Automata, Languages and Programming Vol. 5125 (eds Aceto, L. et al.) 133–144 (Lecture Notes in Computer Science, Springer, 2008).

    Book  Google Scholar 

  30. Kleinberg, J. Complex networks and decentralized search algorithms. Proc. Int. Congr. Math. (ICM) 3, 1019–1044 (2006).

    MathSciNet  MATH  Google Scholar 

  31. Amaral, L. A. N., Scala, A., Barthélemy, M. & Stanley, H. E. Classes of small-world networks. Proc. Natl Acad. Sci. 97, 11149–11152 (2000).

    Article  ADS  Google Scholar 

  32. Meyer, D., Zhang, L. & Fall, K. (eds). RFC4984 (The Internet Architecture Board, 2007).

  33. Krioukov, D., claffy, kc, Fall, K. & Brady, A. On compact routing for the Internet. Comput. Commun. Rev. 37, 41–52 (2007).

    Article  Google Scholar 

  34. Ravasz, E., Gnanakaran, S. & Toroczkai, Z. Network structure of protein folding pathways. Preprint at <http://arxiv.org/abs/0705.0912> (2007).

  35. Toroczkai, Z., Kozma, B., Bassler, K. E., Hengartner, N. W. & Korniss, G. Gradient networks. J. Phys. A: Math. Theor. 41, 155103 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  36. Krioukov, D., Papadopoulos, F., Boguñá, M. & Vahdat, A. Efficient navigation in scale-free networks embedded in hyperbolic metric spaces. Preprint at <http://arxiv.org/abs/0805.1266> (2008).

  37. Boguñá, M. & Pastor-Satorras, R. Class of correlated random networks with hidden variables. Phys. Rev. E 68, 036112 (2003).

    Article  ADS  Google Scholar 

  38. Giot, M. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  ADS  Google Scholar 

  39. Mahadevan, P. et al. The Internet AS-level topology: Three data sources and one definitive metric. Comput. Commun. Rev. 36, 17–26 (2006).

    Article  Google Scholar 

  40. Boguñá, M., Pastor-Satorras, R., Díaz-Guilera, A. & Arenas, A. Models of social networks based on social distance attachment. Phys. Rev. E 70, 056122 (2004).

    Article  ADS  Google Scholar 

  41. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A.-L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    Article  ADS  Google Scholar 

  42. Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex weighted networks. Proc. Natl Acad. Sci. USA 101, 3747–3752 (2004).

    Article  ADS  Google Scholar 

  43. <http://www.transtats.bts.gov/>

Download references

Acknowledgements

We thank M. Á. Serrano for useful comments and discussions. This work was supported in part by DGES grant FIS2007-66485-C02-02, Generalitat de Catalunya grant No. SGR00889, the Ramón y Cajal program of the Spanish Ministry of Science, by NSF CNS-0434996 and CNS-0722070, by DHS N66001-08-C-2029 and by Cisco Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marián Boguñá.

Supplementary information

Supplementary Information

Supplementary Informations (PDF 2072 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boguñá, M., Krioukov, D. & Claffy, K. Navigability of complex networks. Nature Phys 5, 74–80 (2009). https://doi.org/10.1038/nphys1130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1130

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing