Property |
Value |
dbo:abstract
|
- 数学、特に関数解析学の分野におけるC0-半群(C0-はんぐん、英: C0-semigroup)あるいは強連続1パラメータ半群とは、指数関数のひとつの一般化である。線型のスカラー定数を係数とする常微分方程式の解が指数関数で与えるように、バナッハ空間における線型の定数係数常微分方程式の解は、強連続半群によって与えられる。そのようなバナッハ空間における微分方程式は、例えばや偏微分方程式の分野において現れる。 正式には、強連続半群とは、強作用素位相において連続なバナッハ空間 X 上の半群 (R+,+) の表現である。したがって、厳密に言うと、強連続半群は半群ではなく、むしろ非常に特殊な半群の連続的な表現と言える。 詳細は「強連続半群」を参照 (ja)
- 数学、特に関数解析学の分野におけるC0-半群(C0-はんぐん、英: C0-semigroup)あるいは強連続1パラメータ半群とは、指数関数のひとつの一般化である。線型のスカラー定数を係数とする常微分方程式の解が指数関数で与えるように、バナッハ空間における線型の定数係数常微分方程式の解は、強連続半群によって与えられる。そのようなバナッハ空間における微分方程式は、例えばや偏微分方程式の分野において現れる。 正式には、強連続半群とは、強作用素位相において連続なバナッハ空間 X 上の半群 (R+,+) の表現である。したがって、厳密に言うと、強連続半群は半群ではなく、むしろ非常に特殊な半群の連続的な表現と言える。 詳細は「強連続半群」を参照 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 10252 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学、特に関数解析学の分野におけるC0-半群(C0-はんぐん、英: C0-semigroup)あるいは強連続1パラメータ半群とは、指数関数のひとつの一般化である。線型のスカラー定数を係数とする常微分方程式の解が指数関数で与えるように、バナッハ空間における線型の定数係数常微分方程式の解は、強連続半群によって与えられる。そのようなバナッハ空間における微分方程式は、例えばや偏微分方程式の分野において現れる。 正式には、強連続半群とは、強作用素位相において連続なバナッハ空間 X 上の半群 (R+,+) の表現である。したがって、厳密に言うと、強連続半群は半群ではなく、むしろ非常に特殊な半群の連続的な表現と言える。 詳細は「強連続半群」を参照 (ja)
- 数学、特に関数解析学の分野におけるC0-半群(C0-はんぐん、英: C0-semigroup)あるいは強連続1パラメータ半群とは、指数関数のひとつの一般化である。線型のスカラー定数を係数とする常微分方程式の解が指数関数で与えるように、バナッハ空間における線型の定数係数常微分方程式の解は、強連続半群によって与えられる。そのようなバナッハ空間における微分方程式は、例えばや偏微分方程式の分野において現れる。 正式には、強連続半群とは、強作用素位相において連続なバナッハ空間 X 上の半群 (R+,+) の表現である。したがって、厳密に言うと、強連続半群は半群ではなく、むしろ非常に特殊な半群の連続的な表現と言える。 詳細は「強連続半群」を参照 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |