Property |
Value |
dbo:abstract
|
- 抽象代数学における多項式の根体(こんたい、英: rupture field)は、与えられた多項式の根を少なくとも一つ含むような最小の非自明な拡大体を言う。すなわち、根体はその多項式の係数体にひとつの根を添加して与えられる拡大体を言う。 この概念は主に P(X) が係数体 K 上既約であるときに意味を持つ。この場合、P(X) の K 上の任意の根体が KP = K[X]/(P(X)) に同型(ただし標準同型ではない)になる。これは K に係数を持つ一変数多項式環 K[X] を P(X) の生成するイデアルで割った環であり、P(X) で割った剰余全体の成す環と見ることもできる。すなわち、この剰余環をとる操作が P(X) の根体構成である。 多項式 P の根体は必ずしも P の全ての根を含む(すなわち、KP において一次式の積に分解される)わけではない。しかし、この構成を有限回繰り返し適用して P の全ての根を含む有限次拡大を構成することは可能である。このように得られる体は P の分解体と言う。またこれは、もっと一般の(既約とは限らない)多項式に対しても適用できる。 「根体」という用語は必須のものではない。既に述べたように、根体を得るには剰余環 K[X]/(P(X)) をとればよいのであって、剰余環の概念を持ち出せば十分であることから、特段の名称を付けないというような文献も多い。加えて、「根体」("corps de rupture") を別の意味で用いることも稀にあるため注意を要する。 (ja)
- 抽象代数学における多項式の根体(こんたい、英: rupture field)は、与えられた多項式の根を少なくとも一つ含むような最小の非自明な拡大体を言う。すなわち、根体はその多項式の係数体にひとつの根を添加して与えられる拡大体を言う。 この概念は主に P(X) が係数体 K 上既約であるときに意味を持つ。この場合、P(X) の K 上の任意の根体が KP = K[X]/(P(X)) に同型(ただし標準同型ではない)になる。これは K に係数を持つ一変数多項式環 K[X] を P(X) の生成するイデアルで割った環であり、P(X) で割った剰余全体の成す環と見ることもできる。すなわち、この剰余環をとる操作が P(X) の根体構成である。 多項式 P の根体は必ずしも P の全ての根を含む(すなわち、KP において一次式の積に分解される)わけではない。しかし、この構成を有限回繰り返し適用して P の全ての根を含む有限次拡大を構成することは可能である。このように得られる体は P の分解体と言う。またこれは、もっと一般の(既約とは限らない)多項式に対しても適用できる。 「根体」という用語は必須のものではない。既に述べたように、根体を得るには剰余環 K[X]/(P(X)) をとればよいのであって、剰余環の概念を持ち出せば十分であることから、特段の名称を付けないというような文献も多い。加えて、「根体」("corps de rupture") を別の意味で用いることも稀にあるため注意を要する。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 11854 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 抽象代数学における多項式の根体(こんたい、英: rupture field)は、与えられた多項式の根を少なくとも一つ含むような最小の非自明な拡大体を言う。すなわち、根体はその多項式の係数体にひとつの根を添加して与えられる拡大体を言う。 この概念は主に P(X) が係数体 K 上既約であるときに意味を持つ。この場合、P(X) の K 上の任意の根体が KP = K[X]/(P(X)) に同型(ただし標準同型ではない)になる。これは K に係数を持つ一変数多項式環 K[X] を P(X) の生成するイデアルで割った環であり、P(X) で割った剰余全体の成す環と見ることもできる。すなわち、この剰余環をとる操作が P(X) の根体構成である。 多項式 P の根体は必ずしも P の全ての根を含む(すなわち、KP において一次式の積に分解される)わけではない。しかし、この構成を有限回繰り返し適用して P の全ての根を含む有限次拡大を構成することは可能である。このように得られる体は P の分解体と言う。またこれは、もっと一般の(既約とは限らない)多項式に対しても適用できる。 (ja)
- 抽象代数学における多項式の根体(こんたい、英: rupture field)は、与えられた多項式の根を少なくとも一つ含むような最小の非自明な拡大体を言う。すなわち、根体はその多項式の係数体にひとつの根を添加して与えられる拡大体を言う。 この概念は主に P(X) が係数体 K 上既約であるときに意味を持つ。この場合、P(X) の K 上の任意の根体が KP = K[X]/(P(X)) に同型(ただし標準同型ではない)になる。これは K に係数を持つ一変数多項式環 K[X] を P(X) の生成するイデアルで割った環であり、P(X) で割った剰余全体の成す環と見ることもできる。すなわち、この剰余環をとる操作が P(X) の根体構成である。 多項式 P の根体は必ずしも P の全ての根を含む(すなわち、KP において一次式の積に分解される)わけではない。しかし、この構成を有限回繰り返し適用して P の全ての根を含む有限次拡大を構成することは可能である。このように得られる体は P の分解体と言う。またこれは、もっと一般の(既約とは限らない)多項式に対しても適用できる。 (ja)
|
rdfs:label
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |