[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

ベルヌーイ数 (ベルヌーイすう、英: Bernoulli number、まれに関・ベルヌーイ数とも) は数論における基本的な係数を与える数列の1つ。関数 x/ex − 1 のマクローリン展開 (テイラー展開) の展開係数として定義される: ベルヌーイ数を最初に取り扱ったのは関孝和であるが、ほぼ同時期に、関とは独立してスイスの数学者ヤコブ・ベルヌーイが発見したことからこの名がついている。関による発見は、死後の1712年に出版された『括要算法』に記述されており、またベルヌーイによる発見は、死後の1713年に出版された著書『Ars Conjectandi (推測術)』 に記載されている。 ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。

Property Value
dbo:abstract
  • ベルヌーイ数 (ベルヌーイすう、英: Bernoulli number、まれに関・ベルヌーイ数とも) は数論における基本的な係数を与える数列の1つ。関数 x/ex − 1 のマクローリン展開 (テイラー展開) の展開係数として定義される: ベルヌーイ数を最初に取り扱ったのは関孝和であるが、ほぼ同時期に、関とは独立してスイスの数学者ヤコブ・ベルヌーイが発見したことからこの名がついている。関による発見は、死後の1712年に出版された『括要算法』に記述されており、またベルヌーイによる発見は、死後の1713年に出版された著書『Ars Conjectandi (推測術)』 に記載されている。 ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。 (ja)
  • ベルヌーイ数 (ベルヌーイすう、英: Bernoulli number、まれに関・ベルヌーイ数とも) は数論における基本的な係数を与える数列の1つ。関数 x/ex − 1 のマクローリン展開 (テイラー展開) の展開係数として定義される: ベルヌーイ数を最初に取り扱ったのは関孝和であるが、ほぼ同時期に、関とは独立してスイスの数学者ヤコブ・ベルヌーイが発見したことからこの名がついている。関による発見は、死後の1712年に出版された『括要算法』に記述されており、またベルヌーイによる発見は、死後の1713年に出版された著書『Ars Conjectandi (推測術)』 に記載されている。 ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。 (ja)
dbo:wikiPageID
  • 14018 (xsd:integer)
dbo:wikiPageLength
  • 8290 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91213975 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • ベルヌーイ数 (ベルヌーイすう、英: Bernoulli number、まれに関・ベルヌーイ数とも) は数論における基本的な係数を与える数列の1つ。関数 x/ex − 1 のマクローリン展開 (テイラー展開) の展開係数として定義される: ベルヌーイ数を最初に取り扱ったのは関孝和であるが、ほぼ同時期に、関とは独立してスイスの数学者ヤコブ・ベルヌーイが発見したことからこの名がついている。関による発見は、死後の1712年に出版された『括要算法』に記述されており、またベルヌーイによる発見は、死後の1713年に出版された著書『Ars Conjectandi (推測術)』 に記載されている。 ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。 (ja)
  • ベルヌーイ数 (ベルヌーイすう、英: Bernoulli number、まれに関・ベルヌーイ数とも) は数論における基本的な係数を与える数列の1つ。関数 x/ex − 1 のマクローリン展開 (テイラー展開) の展開係数として定義される: ベルヌーイ数を最初に取り扱ったのは関孝和であるが、ほぼ同時期に、関とは独立してスイスの数学者ヤコブ・ベルヌーイが発見したことからこの名がついている。関による発見は、死後の1712年に出版された『括要算法』に記述されており、またベルヌーイによる発見は、死後の1713年に出版された著書『Ars Conjectandi (推測術)』 に記載されている。 ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。 (ja)
rdfs:label
  • ベルヌーイ数 (ja)
  • ベルヌーイ数 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-en:knownFor of
is owl:sameAs of
is foaf:primaryTopic of