[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

数学において、ウィークス多様体(Weeks manifold)(フォメンコ・マットヴェーエフ・ウィークス多様体(Fomenko–Matveev–Weeks manifold)と呼ばれるときもある)は、(Whitehead link)上の (5, 2) と (5, 1) のデーン手術によって得られる閉じた双曲3次元多様体である。ウィークス多様体は、約 0.9427... に近い体積を持ち、 により、閉じた向き付け可能な双曲3次元多様体の最小の体積であることが示された。この多様体は、独立に、 と により発見された。 ウィークス多様体は数論的双曲3次元多様体であるので、その体積は数論的なデータを使い計算することができ、アルマン・ボレルは次の公式を与えた。 ここに、k は θ 3 − θ + 1 = 0 を満す θ により生成される数体であり、ζ k は k のデデキントゼータ函数である(Ted Chinburg, Eduardo Friedman & Kerry N. Jones et al. )。

Property Value
dbo:abstract
  • 数学において、ウィークス多様体(Weeks manifold)(フォメンコ・マットヴェーエフ・ウィークス多様体(Fomenko–Matveev–Weeks manifold)と呼ばれるときもある)は、(Whitehead link)上の (5, 2) と (5, 1) のデーン手術によって得られる閉じた双曲3次元多様体である。ウィークス多様体は、約 0.9427... に近い体積を持ち、 により、閉じた向き付け可能な双曲3次元多様体の最小の体積であることが示された。この多様体は、独立に、 と により発見された。 ウィークス多様体は数論的双曲3次元多様体であるので、その体積は数論的なデータを使い計算することができ、アルマン・ボレルは次の公式を与えた。 ここに、k は θ 3 − θ + 1 = 0 を満す θ により生成される数体であり、ζ k は k のデデキントゼータ函数である(Ted Chinburg, Eduardo Friedman & Kerry N. Jones et al. )。 ホワイトヘッドリンク上のカスプをもつ (5, 1) デーン手術により得られる双曲 3-次元多様体は、8の字結び目の結び目補空間の兄弟のような多様体である。8の字結び目の結び目補空間とその兄弟の多様体は、任意の向き付け可能なカスプを持つ双曲3次元多様体の中で最小の体積を持つ。このように、ウィークス多様体は、2つの最小の体積を持つ向き付け可能なカスプを持つ双曲3次元多様体の双曲デーン手術により得ることができる。 (ja)
  • 数学において、ウィークス多様体(Weeks manifold)(フォメンコ・マットヴェーエフ・ウィークス多様体(Fomenko–Matveev–Weeks manifold)と呼ばれるときもある)は、(Whitehead link)上の (5, 2) と (5, 1) のデーン手術によって得られる閉じた双曲3次元多様体である。ウィークス多様体は、約 0.9427... に近い体積を持ち、 により、閉じた向き付け可能な双曲3次元多様体の最小の体積であることが示された。この多様体は、独立に、 と により発見された。 ウィークス多様体は数論的双曲3次元多様体であるので、その体積は数論的なデータを使い計算することができ、アルマン・ボレルは次の公式を与えた。 ここに、k は θ 3 − θ + 1 = 0 を満す θ により生成される数体であり、ζ k は k のデデキントゼータ函数である(Ted Chinburg, Eduardo Friedman & Kerry N. Jones et al. )。 ホワイトヘッドリンク上のカスプをもつ (5, 1) デーン手術により得られる双曲 3-次元多様体は、8の字結び目の結び目補空間の兄弟のような多様体である。8の字結び目の結び目補空間とその兄弟の多様体は、任意の向き付け可能なカスプを持つ双曲3次元多様体の中で最小の体積を持つ。このように、ウィークス多様体は、2つの最小の体積を持つ向き付け可能なカスプを持つ双曲3次元多様体の双曲デーン手術により得ることができる。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3145083 (xsd:integer)
dbo:wikiPageLength
  • 5206 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 57126623 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:first
  • Ted (ja)
  • Eduardo (ja)
  • Alan W. (ja)
  • Kerry N. (ja)
  • Ted (ja)
  • Eduardo (ja)
  • Alan W. (ja)
  • Kerry N. (ja)
prop-ja:issue
  • 1 (xsd:integer)
prop-ja:journal
  • Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV (ja)
  • Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV (ja)
prop-ja:last
  • Friedman (ja)
  • Reid (ja)
  • Jones (ja)
  • Chinburg (ja)
  • Friedman (ja)
  • Reid (ja)
  • Jones (ja)
  • Chinburg (ja)
prop-ja:mr
  • 1882023 (xsd:integer)
prop-ja:pages
  • 1 (xsd:integer)
prop-ja:title
  • The arithmetic hyperbolic 3-manifold of smallest volume (ja)
  • The arithmetic hyperbolic 3-manifold of smallest volume (ja)
prop-ja:volume
  • 30 (xsd:integer)
prop-ja:wikiPageUsesTemplate
prop-ja:year
  • 2001 (xsd:integer)
prop-ja:zbl
  • 1008.110150 (xsd:double)
dct:subject
rdfs:comment
  • 数学において、ウィークス多様体(Weeks manifold)(フォメンコ・マットヴェーエフ・ウィークス多様体(Fomenko–Matveev–Weeks manifold)と呼ばれるときもある)は、(Whitehead link)上の (5, 2) と (5, 1) のデーン手術によって得られる閉じた双曲3次元多様体である。ウィークス多様体は、約 0.9427... に近い体積を持ち、 により、閉じた向き付け可能な双曲3次元多様体の最小の体積であることが示された。この多様体は、独立に、 と により発見された。 ウィークス多様体は数論的双曲3次元多様体であるので、その体積は数論的なデータを使い計算することができ、アルマン・ボレルは次の公式を与えた。 ここに、k は θ 3 − θ + 1 = 0 を満す θ により生成される数体であり、ζ k は k のデデキントゼータ函数である(Ted Chinburg, Eduardo Friedman & Kerry N. Jones et al. )。 (ja)
  • 数学において、ウィークス多様体(Weeks manifold)(フォメンコ・マットヴェーエフ・ウィークス多様体(Fomenko–Matveev–Weeks manifold)と呼ばれるときもある)は、(Whitehead link)上の (5, 2) と (5, 1) のデーン手術によって得られる閉じた双曲3次元多様体である。ウィークス多様体は、約 0.9427... に近い体積を持ち、 により、閉じた向き付け可能な双曲3次元多様体の最小の体積であることが示された。この多様体は、独立に、 と により発見された。 ウィークス多様体は数論的双曲3次元多様体であるので、その体積は数論的なデータを使い計算することができ、アルマン・ボレルは次の公式を与えた。 ここに、k は θ 3 − θ + 1 = 0 を満す θ により生成される数体であり、ζ k は k のデデキントゼータ函数である(Ted Chinburg, Eduardo Friedman & Kerry N. Jones et al. )。 (ja)
rdfs:label
  • ウィークス多様体 (ja)
  • ウィークス多様体 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of