[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Property Value
dbo:abstract
  • A (Hausdorff–)Banach–Tarski-paradoxon egy bizonyított matematikai tétel, mely szerint egy 3 dimenziós, tömör gömböt a kiválasztási axióma felhasználásával fel lehet vágni véges sok olyan (nem mérhető) darabra, amelyekből két, az eredeti gömbbel megegyező méretű tömör gömböt lehet összeállítani. A paradoxont Stefan Banach és Alfred Tarski bizonyította be 1924-ben. Banach és Tarski ezt a bizonyítást annak szemléltetésére szánta, hogy a kiválasztási axióma helytelen. Ma azonban a matematikusok a bizonyítást helyesnek fogadják el, és nem az axiómát vetik el, hanem az eredményt elfogadják és érvényes tételként jegyzik. Így ez a bizonyítás csupán egy antiintuitív eredményt ad, és az intuíciónk tévedhetőségét illusztrálja. A paradoxon feloldásához azt kell figyelembe vennünk, hogy ami paradoxnak tűnik, az az, hogy a két gömb térfogata kétszer akkora, mint az egy gömb térfogata, az átdarabolás pedig „normális” esetben térfogattartó. Azonban a tételben szereplő átdarabolás nem mérhető darabokat ad, ez az oka annak, hogy a térfogat a művelet során nem marad meg. Fizikai értelemben nem volna lehetséges ez az átdarabolás, hiszen a valóságban csak mérhető darabokat tudunk létrehozni. (Az anyag kvantumos szerkezete egyébként is lehetetlenné tenné az átdarabolást.) Így tehát senki nem tud meggazdagodni egy aranygömb két aranygömbbé való átdarabolásával a tétel segítségével. (hu)
  • A (Hausdorff–)Banach–Tarski-paradoxon egy bizonyított matematikai tétel, mely szerint egy 3 dimenziós, tömör gömböt a kiválasztási axióma felhasználásával fel lehet vágni véges sok olyan (nem mérhető) darabra, amelyekből két, az eredeti gömbbel megegyező méretű tömör gömböt lehet összeállítani. A paradoxont Stefan Banach és Alfred Tarski bizonyította be 1924-ben. Banach és Tarski ezt a bizonyítást annak szemléltetésére szánta, hogy a kiválasztási axióma helytelen. Ma azonban a matematikusok a bizonyítást helyesnek fogadják el, és nem az axiómát vetik el, hanem az eredményt elfogadják és érvényes tételként jegyzik. Így ez a bizonyítás csupán egy antiintuitív eredményt ad, és az intuíciónk tévedhetőségét illusztrálja. A paradoxon feloldásához azt kell figyelembe vennünk, hogy ami paradoxnak tűnik, az az, hogy a két gömb térfogata kétszer akkora, mint az egy gömb térfogata, az átdarabolás pedig „normális” esetben térfogattartó. Azonban a tételben szereplő átdarabolás nem mérhető darabokat ad, ez az oka annak, hogy a térfogat a művelet során nem marad meg. Fizikai értelemben nem volna lehetséges ez az átdarabolás, hiszen a valóságban csak mérhető darabokat tudunk létrehozni. (Az anyag kvantumos szerkezete egyébként is lehetetlenné tenné az átdarabolást.) Így tehát senki nem tud meggazdagodni egy aranygömb két aranygömbbé való átdarabolásával a tétel segítségével. (hu)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 57939 (xsd:integer)
dbo:wikiPageLength
  • 8158 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 23878066 (xsd:integer)
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Banach–Tarski-paradoxon (hu)
  • Banach–Tarski-paradoxon (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of