Property |
Value |
dbo:abstract
|
- Le théorème de Banach-Alaoglu-Bourbaki est un résultat de compacité en analyse fonctionnelle, dû à Stefan Banach dans le cas d'un espace vectoriel normé séparable et généralisé en 1938 par Leonidas Alaoglu puis Nicolas Bourbaki. Si E est un ℝ-espace vectoriel topologique et V un voisinage de 0, alors l'ensemble polaire V° de V, défini par est une partie compacte du dual topologique E' pour la topologie faible-*. Dans le cas où E est un espace vectoriel normé, cela revient à dire que la boule unité fermée de E' (pour la norme de la topologie forte) est *-faiblement compacte, ou encore, que toute partie de E' fortement bornée est *-faiblement relativement compacte. Dans un espace de Banach réflexif (en particulier un espace de Hilbert), la topologie faible-* coïncide avec la topologie faible et toute suite bornée admet une sous-suite faiblement convergente. (fr)
- Le théorème de Banach-Alaoglu-Bourbaki est un résultat de compacité en analyse fonctionnelle, dû à Stefan Banach dans le cas d'un espace vectoriel normé séparable et généralisé en 1938 par Leonidas Alaoglu puis Nicolas Bourbaki. Si E est un ℝ-espace vectoriel topologique et V un voisinage de 0, alors l'ensemble polaire V° de V, défini par est une partie compacte du dual topologique E' pour la topologie faible-*. Dans le cas où E est un espace vectoriel normé, cela revient à dire que la boule unité fermée de E' (pour la norme de la topologie forte) est *-faiblement compacte, ou encore, que toute partie de E' fortement bornée est *-faiblement relativement compacte. Dans un espace de Banach réflexif (en particulier un espace de Hilbert), la topologie faible-* coïncide avec la topologie faible et toute suite bornée admet une sous-suite faiblement convergente. (fr)
|
dbo:namedAfter
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5253 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:nomUrl
|
- Banach-AlaogluTheorem (fr)
- Banach-AlaogluTheorem (fr)
|
prop-fr:titre
|
- Banach-Alaoglu Theorem (fr)
- Banach-Alaoglu Theorem (fr)
|
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Le théorème de Banach-Alaoglu-Bourbaki est un résultat de compacité en analyse fonctionnelle, dû à Stefan Banach dans le cas d'un espace vectoriel normé séparable et généralisé en 1938 par Leonidas Alaoglu puis Nicolas Bourbaki. Si E est un ℝ-espace vectoriel topologique et V un voisinage de 0, alors l'ensemble polaire V° de V, défini par est une partie compacte du dual topologique E' pour la topologie faible-*. (fr)
- Le théorème de Banach-Alaoglu-Bourbaki est un résultat de compacité en analyse fonctionnelle, dû à Stefan Banach dans le cas d'un espace vectoriel normé séparable et généralisé en 1938 par Leonidas Alaoglu puis Nicolas Bourbaki. Si E est un ℝ-espace vectoriel topologique et V un voisinage de 0, alors l'ensemble polaire V° de V, défini par est une partie compacte du dual topologique E' pour la topologie faible-*. (fr)
|
rdfs:label
|
- Satz von Banach-Alaoglu (de)
- Stelling van Banach-Alaoglu (nl)
- Teorema de Banach-Alaoglu (ca)
- Teorema de Banach-Alaoglu (es)
- Teorema di Banach-Alaoglu (it)
- Théorème de Banach-Alaoglu-Bourbaki (fr)
- バナッハ=アラオグルの定理 (ja)
- Satz von Banach-Alaoglu (de)
- Stelling van Banach-Alaoglu (nl)
- Teorema de Banach-Alaoglu (ca)
- Teorema de Banach-Alaoglu (es)
- Teorema di Banach-Alaoglu (it)
- Théorème de Banach-Alaoglu-Bourbaki (fr)
- バナッハ=アラオグルの定理 (ja)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |