[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

About: 2 21 polytope

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope. Its Coxeter symbol is 221, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 2-node sequences. He also studied its connection with the 27 lines on the cubic surface, which are naturally in correspondence with the vertices of 221.

Property Value
dbo:abstract
  • In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope. Its Coxeter symbol is 221, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 2-node sequences. He also studied its connection with the 27 lines on the cubic surface, which are naturally in correspondence with the vertices of 221. The rectified 221 is constructed by points at the mid-edges of the 221. The birectified 221 is constructed by points at the triangle face centers of the 221, and is the same as the rectified 122. These polytopes are a part of family of 39 convex uniform polytopes in 6-dimensions, made of uniform 5-polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: . (en)
  • En geometrio, E6 hiperpluredro estas . Ĝia konstruado estas bazita sur la grupo. Ĝi estas unu el familio de 39 konveksaj uniformaj hiperpluredroj en 6-dimensioj, el uniformaj hiperpluredraj facetoj kaj verticaj figuroj, difinitaj per ĉiuj permutoj de ringitaj figuroj de Coxeter-Dynkin. Ĝi estis esplorita de , kaj publikigita en lia papero de 1900. Li nomis ĝin kiel 6-ic duonregula figuro. Ĝi estas ankaŭ nomata de Coxeter kiel 221 pro ĝia forkiĝanta figuro de Coxeter-Dynkin, kun sola ringo sur la fino de unu el la 2-vertica vico, tiel ĝi apartenas al duonregula k21 familio. (eo)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 19232473 (xsd:integer)
dbo:wikiPageLength
  • 17799 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 999345269 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • En geometrio, E6 hiperpluredro estas . Ĝia konstruado estas bazita sur la grupo. Ĝi estas unu el familio de 39 konveksaj uniformaj hiperpluredroj en 6-dimensioj, el uniformaj hiperpluredraj facetoj kaj verticaj figuroj, difinitaj per ĉiuj permutoj de ringitaj figuroj de Coxeter-Dynkin. Ĝi estis esplorita de , kaj publikigita en lia papero de 1900. Li nomis ĝin kiel 6-ic duonregula figuro. Ĝi estas ankaŭ nomata de Coxeter kiel 221 pro ĝia forkiĝanta figuro de Coxeter-Dynkin, kun sola ringo sur la fino de unu el la 2-vertica vico, tiel ĝi apartenas al duonregula k21 familio. (eo)
  • In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope. Its Coxeter symbol is 221, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 2-node sequences. He also studied its connection with the 27 lines on the cubic surface, which are naturally in correspondence with the vertices of 221. (en)
rdfs:label
  • 2 21 polytope (en)
  • E6 hiperpluredro (eo)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License