In mathematics, specifically in topology of manifolds, a compact codimension-one submanifold of a manifold is said to be 2-sided in when there is an embedding with for each and . In other words, if its normal bundle is trivial. This means, for example that a curve in a surface is 2-sided if it has a tubular neighborhood which is a cartesian product of the curve times an interval. A submanifold which is not 2-sided is called 1-sided.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dct:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is owl:differentFrom of | |
is foaf:primaryTopic of |