In order theory, a branch of mathematics, a semiorder is a type of ordering for items with numerical scores, where items with widely differing scores are compared by their scores and where scores within a given margin of error are deemed incomparable. Semiorders were introduced and applied in mathematical psychology by Duncan Luce as a model of human preference. They generalize strict weak orderings, in which items with equal scores may be tied but there is no margin of error. They are a special case of partial orders and of interval orders, and can be characterized among the partial orders by additional axioms, or by two forbidden four-item suborders.
Property | Value |
---|---|
dbo:abstract |
|
dbo:thumbnail | |
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:alt |
|
dbp:authorlink |
|
dbp:caption |
|
dbp:first |
|
dbp:image |
|
dbp:last |
|
dbp:totalWidth |
|
dbp:wikiPageUsesTemplate | |
dbp:year |
|
dct:subject | |
gold:hypernym | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:depiction | |
foaf:isPrimaryTopicOf | |
is dbo:knownFor of | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of |
|
is dbp:knownFor of | |
is foaf:primaryTopic of |