In algebraic geometry, the Schottky–Klein prime form E(x,y) of a compact Riemann surface X depends on two elements x and y of X, and vanishes if and only if x = y. The prime form E is not quite a holomorphic function on X × X, but is a section of a holomorphic line bundle over this space. Prime forms were introduced by Friedrich Schottky and Felix Klein. Prime forms can be used to construct meromorphic functions on X with given poles and zeros. If Σniai is a divisor linearly equivalent to 0, then ΠE(x,ai)ni is a meromorphic function with given poles and zeros.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dct:subject | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:differentFrom | |
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageDisambiguates of | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |