[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics and theoretical physics, a large diffeomorphism is an equivalence class of diffeomorphisms under the equivalence relation where diffeomorphisms that can be continuously connected to each other are in the same equivalence class. For example, a two-dimensional real torus has a SL(2,Z) group of large diffeomorphisms by which the one-cycles of the torus are transformed into their integer linear combinations. This group of large diffeomorphisms is called the modular group.

Property Value
dbo:abstract
  • In mathematics and theoretical physics, a large diffeomorphism is an equivalence class of diffeomorphisms under the equivalence relation where diffeomorphisms that can be continuously connected to each other are in the same equivalence class. For example, a two-dimensional real torus has a SL(2,Z) group of large diffeomorphisms by which the one-cycles of the torus are transformed into their integer linear combinations. This group of large diffeomorphisms is called the modular group. More generally, for a surface S, the structure of self-homeomorphisms up to homotopy is known as the mapping class group. It is known (for compact, orientable S) that this is isomorphic with the automorphism group of the fundamental group of S. This is consistent with the genus 1 case, stated above, if one takes into account that then the fundamental group is Z2, on which the modular group acts as automorphisms (as a subgroup of index 2 in all automorphisms, since the orientation may also be reverse, by a transformation with determinant −1). (en)
  • Em matemática e física teórica, um difeomorfismo amplo é um difeomorfismo que não pode ser continuamente conectado à identidade de difeomorfismo (porque é topologicamente não trivial). Por exemplo, um toróide bidimensional real tem um grupo SL (2, Z) de difeomorfismos amplos, através do qual os monociclos do toro são transformados em suas combinações lineares inteiras. Este grupo de difeomorfismos amplos é chamado como o grupo modular. (pt)
dbo:wikiPageID
  • 737164 (xsd:integer)
dbo:wikiPageLength
  • 1456 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1098836543 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Em matemática e física teórica, um difeomorfismo amplo é um difeomorfismo que não pode ser continuamente conectado à identidade de difeomorfismo (porque é topologicamente não trivial). Por exemplo, um toróide bidimensional real tem um grupo SL (2, Z) de difeomorfismos amplos, através do qual os monociclos do toro são transformados em suas combinações lineares inteiras. Este grupo de difeomorfismos amplos é chamado como o grupo modular. (pt)
  • In mathematics and theoretical physics, a large diffeomorphism is an equivalence class of diffeomorphisms under the equivalence relation where diffeomorphisms that can be continuously connected to each other are in the same equivalence class. For example, a two-dimensional real torus has a SL(2,Z) group of large diffeomorphisms by which the one-cycles of the torus are transformed into their integer linear combinations. This group of large diffeomorphisms is called the modular group. (en)
rdfs:label
  • Large diffeomorphism (en)
  • Difeomorfismo amplo (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License