dbo:abstract
|
- In mathematics and theoretical physics, a large diffeomorphism is an equivalence class of diffeomorphisms under the equivalence relation where diffeomorphisms that can be continuously connected to each other are in the same equivalence class. For example, a two-dimensional real torus has a SL(2,Z) group of large diffeomorphisms by which the one-cycles of the torus are transformed into their integer linear combinations. This group of large diffeomorphisms is called the modular group. More generally, for a surface S, the structure of self-homeomorphisms up to homotopy is known as the mapping class group. It is known (for compact, orientable S) that this is isomorphic with the automorphism group of the fundamental group of S. This is consistent with the genus 1 case, stated above, if one takes into account that then the fundamental group is Z2, on which the modular group acts as automorphisms (as a subgroup of index 2 in all automorphisms, since the orientation may also be reverse, by a transformation with determinant −1). (en)
- Em matemática e física teórica, um difeomorfismo amplo é um difeomorfismo que não pode ser continuamente conectado à identidade de difeomorfismo (porque é topologicamente não trivial). Por exemplo, um toróide bidimensional real tem um grupo SL (2, Z) de difeomorfismos amplos, através do qual os monociclos do toro são transformados em suas combinações lineares inteiras. Este grupo de difeomorfismos amplos é chamado como o grupo modular. (pt)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1456 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Em matemática e física teórica, um difeomorfismo amplo é um difeomorfismo que não pode ser continuamente conectado à identidade de difeomorfismo (porque é topologicamente não trivial). Por exemplo, um toróide bidimensional real tem um grupo SL (2, Z) de difeomorfismos amplos, através do qual os monociclos do toro são transformados em suas combinações lineares inteiras. Este grupo de difeomorfismos amplos é chamado como o grupo modular. (pt)
- In mathematics and theoretical physics, a large diffeomorphism is an equivalence class of diffeomorphisms under the equivalence relation where diffeomorphisms that can be continuously connected to each other are in the same equivalence class. For example, a two-dimensional real torus has a SL(2,Z) group of large diffeomorphisms by which the one-cycles of the torus are transformed into their integer linear combinations. This group of large diffeomorphisms is called the modular group. (en)
|
rdfs:label
|
- Large diffeomorphism (en)
- Difeomorfismo amplo (pt)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |