[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
An Entity of Type: organisation, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The infinite canvas refers to the potentially limitless space that is available to webcomics presented on the World Wide Web. The term was introduced by Scott McCloud in his 2000 book Reinventing Comics, in which he suggested that webcomic creators could make a web page as large as needed to contain a comic page of any conceivable size. This infinite canvas would create an endless amount of storytelling benefits and would allow creators much more freedom in how they present their artwork.

Property Value
dbo:abstract
  • The infinite canvas refers to the potentially limitless space that is available to webcomics presented on the World Wide Web. The term was introduced by Scott McCloud in his 2000 book Reinventing Comics, in which he suggested that webcomic creators could make a web page as large as needed to contain a comic page of any conceivable size. This infinite canvas would create an endless amount of storytelling benefits and would allow creators much more freedom in how they present their artwork. Journalists responded skeptically to McCloud's idea of the infinite canvas, as five years after Reinventing Comics, the concept had not taken off in large proportions yet. Webcomics were primarily presented in the form of comic strips, which fit easily on a screen. Various webcomic creators have experimented with the infinite canvas, however, and extending comics to beyond what is possible in print has gained some popularity over the years. (en)
  • Бесконечное полотно (англ. Infinite canvas) — концепция, смысл которой заключается в том, что теоретически размеры страницы цифрового комикса могут быть бесконечными, и, следовательно, такие комиксы не ограничены стандартными размерами страниц, использующихся в их напечатанных аналогах. Художник может полностью изобразить весь комикс на одной «странице» неопределённой длины. Впервые данный термин появился в книге «Reinventing Comics», написанной американским теоретиком комиксов Скоттом МакКлаудом в 2000 году. Ярким примером комикса, использующего бесконечное полотно, является The Wormworld Saga, каждая глава которого занимает одну интернет-страницу и нарисована без прерывания. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1611322 (xsd:integer)
dbo:wikiPageLength
  • 13253 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1123713620 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • The infinite canvas refers to the potentially limitless space that is available to webcomics presented on the World Wide Web. The term was introduced by Scott McCloud in his 2000 book Reinventing Comics, in which he suggested that webcomic creators could make a web page as large as needed to contain a comic page of any conceivable size. This infinite canvas would create an endless amount of storytelling benefits and would allow creators much more freedom in how they present their artwork. (en)
  • Бесконечное полотно (англ. Infinite canvas) — концепция, смысл которой заключается в том, что теоретически размеры страницы цифрового комикса могут быть бесконечными, и, следовательно, такие комиксы не ограничены стандартными размерами страниц, использующихся в их напечатанных аналогах. Художник может полностью изобразить весь комикс на одной «странице» неопределённой длины. Впервые данный термин появился в книге «Reinventing Comics», написанной американским теоретиком комиксов Скоттом МакКлаудом в 2000 году. (ru)
rdfs:label
  • Infinite canvas (en)
  • Бесконечное полотно (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:genre of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License