dbo:abstract
|
- In der Funktionalanalysis, einem Teilgebiet der Mathematik, ist die Klasse der Fredholm-Operatoren (nach E. I. Fredholm) eine bestimmte Klasse linearer Operatoren, die man „fast“ invertieren kann. Jedem Fredholm-Operator ordnet man eine ganze Zahl zu, diese wird Fredholm-Index, analytischer Index oder kurz Index genannt. (de)
- In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm. By definition, a Fredholm operator is a bounded linear operator T : X → Y between two Banach spaces with finite-dimensional kernel and finite-dimensional (algebraic) cokernel , and with closed range . The last condition is actually redundant. The index of a Fredholm operator is the integer or in other words, (en)
- En mathématiques, l'opérateur de Fredholm est un concept d'analyse fonctionnelle qui porte le nom du mathématicien suédois Ivar Fredholm (1866-1927). Il s'agit d'un opérateur borné L entre deux espaces de Banach X et Y ayant un noyau de dimension finie et une image de codimension finie. On peut alors définir l'indice de l'opérateur comme Sous ces hypothèses, l'espace image de L est fermé (il admet même un supplémentaire topologique). (fr)
- 数学の分野におけるフレドホルム作用素(フレドホルムさようそ、英語: Fredholm operator)とは、積分方程式に関するフレドホルム理論において登場するある作用素のことを言う。数学者のエリック・イヴァル・フレドホルムの名にちなむ。 フレドホルム作用素は、二つのバナッハ空間の間の有界線形作用素であって、その核および余核が有限次元であり、その値域が閉であるようなもののことを言う(最後の条件は実際には必要ない)。またそれと同値な定義として、ある作用素 T : X → Y がフレドホルム作用素であるとは、それがコンパクト作用素を法として可逆な作用素である(適当なコンパクト作用素の違いを除いて可逆である)こと、というものがある。すなわち がそれぞれ空間 X および Y 上のコンパクト作用素となるような有界線形作用素 S : Y → X が存在するならば、T はフレドホルム作用素である。 フレドホルム作用素の指数は あるいは、それと同値だが で定義される(記号の意味については次元、零空間、 を参照されたい)。 (ja)
- 함수해석학에서 프레드홀름 작용소(Fredholm作用素, 영어: Fredholm operator)는 두 바나흐 공간 사이의, 핵과 여핵이 유한 차원인 유계 작용소이다. 이 경우, 핵의 차원과 여핵의 차원의 차를 그 지표(指標, 영어: index 인덱스[*])라고 한다. (ko)
- In matematica, in particolare all'interno della teoria di Fredholm, un operatore di Fredholm è un operatore lineare limitato tra spazi di Banach il cui nucleo e conucleo hanno dimensione finita, e la sua immagine è chiusa, sebbene quest'ultima richiesta sia ridondante. (it)
- Operator Fredholma – w analizie funkcjonalnej, ograniczony operator liniowy pomiędzy dwiema przestrzeniami Banacha, którego jądro i kojądro są skończenie wymiarowe. Nazwa pojęcia pochodzi od Erika Ivara Fredholma, który rozważał takie operatory w teorii równań całkowych. (pl)
- Фредгольмов оператор, или нётеров оператор, — это линейный оператор между векторными пространствами (обычно бесконечной размерности), у которого ядро и коядро конечномерны. Иначе говоря, пусть X, Y — векторные пространства. Оператор называют фредгольмовым, если
* ,
* . Оператор между конечномерными пространствами всегда фредгольмов. Обычно понятие рассматривают для банаховых пространств и оператор предполагают ограниченным. Следует также отметить, что в силу своего определения, фредгольмов оператор всегда . (ru)
- Um operador de Fredholm é, por definição, um operador linear limitado entre espaços de Banach e tal que as dimensões de seu kernel e de seu cokernel são ambas finitas. Alguns autores incluem a hipótese de que sua imagem é fechada, porém, tal hipótese é redundante. O conjunto de todos os operadores de Fredholm é denotado por . (pt)
- Оператор Фредгольма або оператор Нетера — лінійний оператор між векторними просторами для якого ядро і коядро мають скінченні розмірності. Лінійний оператор між скінченновимірними просторами очевидно завжди є фредгольмовим. Тому інтерес становить випадок нескінченновимірних просторів. Найчастіше фредгольмові оператори розглядають для банахових просторів і гільбертових просторів і додатково вводиться умова обмеженості оператора. (uk)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 10662 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:author
| |
dbp:id
| |
dbp:title
|
- Fredholm theorems (en)
- Fredholm's Theorem (en)
|
dbp:urlname
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
rdf:type
| |
rdfs:comment
|
- In der Funktionalanalysis, einem Teilgebiet der Mathematik, ist die Klasse der Fredholm-Operatoren (nach E. I. Fredholm) eine bestimmte Klasse linearer Operatoren, die man „fast“ invertieren kann. Jedem Fredholm-Operator ordnet man eine ganze Zahl zu, diese wird Fredholm-Index, analytischer Index oder kurz Index genannt. (de)
- In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm. By definition, a Fredholm operator is a bounded linear operator T : X → Y between two Banach spaces with finite-dimensional kernel and finite-dimensional (algebraic) cokernel , and with closed range . The last condition is actually redundant. The index of a Fredholm operator is the integer or in other words, (en)
- En mathématiques, l'opérateur de Fredholm est un concept d'analyse fonctionnelle qui porte le nom du mathématicien suédois Ivar Fredholm (1866-1927). Il s'agit d'un opérateur borné L entre deux espaces de Banach X et Y ayant un noyau de dimension finie et une image de codimension finie. On peut alors définir l'indice de l'opérateur comme Sous ces hypothèses, l'espace image de L est fermé (il admet même un supplémentaire topologique). (fr)
- 数学の分野におけるフレドホルム作用素(フレドホルムさようそ、英語: Fredholm operator)とは、積分方程式に関するフレドホルム理論において登場するある作用素のことを言う。数学者のエリック・イヴァル・フレドホルムの名にちなむ。 フレドホルム作用素は、二つのバナッハ空間の間の有界線形作用素であって、その核および余核が有限次元であり、その値域が閉であるようなもののことを言う(最後の条件は実際には必要ない)。またそれと同値な定義として、ある作用素 T : X → Y がフレドホルム作用素であるとは、それがコンパクト作用素を法として可逆な作用素である(適当なコンパクト作用素の違いを除いて可逆である)こと、というものがある。すなわち がそれぞれ空間 X および Y 上のコンパクト作用素となるような有界線形作用素 S : Y → X が存在するならば、T はフレドホルム作用素である。 フレドホルム作用素の指数は あるいは、それと同値だが で定義される(記号の意味については次元、零空間、 を参照されたい)。 (ja)
- 함수해석학에서 프레드홀름 작용소(Fredholm作用素, 영어: Fredholm operator)는 두 바나흐 공간 사이의, 핵과 여핵이 유한 차원인 유계 작용소이다. 이 경우, 핵의 차원과 여핵의 차원의 차를 그 지표(指標, 영어: index 인덱스[*])라고 한다. (ko)
- In matematica, in particolare all'interno della teoria di Fredholm, un operatore di Fredholm è un operatore lineare limitato tra spazi di Banach il cui nucleo e conucleo hanno dimensione finita, e la sua immagine è chiusa, sebbene quest'ultima richiesta sia ridondante. (it)
- Operator Fredholma – w analizie funkcjonalnej, ograniczony operator liniowy pomiędzy dwiema przestrzeniami Banacha, którego jądro i kojądro są skończenie wymiarowe. Nazwa pojęcia pochodzi od Erika Ivara Fredholma, który rozważał takie operatory w teorii równań całkowych. (pl)
- Фредгольмов оператор, или нётеров оператор, — это линейный оператор между векторными пространствами (обычно бесконечной размерности), у которого ядро и коядро конечномерны. Иначе говоря, пусть X, Y — векторные пространства. Оператор называют фредгольмовым, если
* ,
* . Оператор между конечномерными пространствами всегда фредгольмов. Обычно понятие рассматривают для банаховых пространств и оператор предполагают ограниченным. Следует также отметить, что в силу своего определения, фредгольмов оператор всегда . (ru)
- Um operador de Fredholm é, por definição, um operador linear limitado entre espaços de Banach e tal que as dimensões de seu kernel e de seu cokernel são ambas finitas. Alguns autores incluem a hipótese de que sua imagem é fechada, porém, tal hipótese é redundante. O conjunto de todos os operadores de Fredholm é denotado por . (pt)
- Оператор Фредгольма або оператор Нетера — лінійний оператор між векторними просторами для якого ядро і коядро мають скінченні розмірності. Лінійний оператор між скінченновимірними просторами очевидно завжди є фредгольмовим. Тому інтерес становить випадок нескінченновимірних просторів. Найчастіше фредгольмові оператори розглядають для банахових просторів і гільбертових просторів і додатково вводиться умова обмеженості оператора. (uk)
|
rdfs:label
|
- Fredholm-Operator (de)
- Opérateur de Fredholm (fr)
- Fredholm operator (en)
- Operatore di Fredholm (it)
- 프레드홀름 작용소 (ko)
- フレドホルム作用素 (ja)
- Operator Fredholma (pl)
- Operador de Fredholm (pt)
- Фредгольмов оператор (ru)
- Оператор Фредгольма (uk)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |