[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a topological space. In terms of category theory, the fundamental groupoid is a certain functor from the category of topological spaces to the category of groupoids. — Alexander Grothendieck, Esquisse d'un Programme (Section 2, English translation)

Property Value
dbo:abstract
  • In der Mathematik, speziell der algebraischen Topologie, soll das Fundamentalgruppoid eines topologischen Raumes die Menge der Wegzusammenhangskomponenten und die Fundamentalgruppen (zu allen ) in einem einzigen algebraischen Objekt zusammenfassen. Das Fundamentalgruppoid ist ein Gruppoid, also eine Kategorie, in der jeder Morphismus ein Isomorphismus ist. Die Objekte sind die Punkte von , die Morphismen von nach sind die Homotopieklassen (relativ ) von stetigen Wegen mit . In diesem Gruppoid entspricht der Menge der Isomorphismusklassen von Objekten, während der Automorphismengruppe des Objekts entspricht. (de)
  • In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a topological space. In terms of category theory, the fundamental groupoid is a certain functor from the category of topological spaces to the category of groupoids. [...] people still obstinately persist, when calculating with fundamental groups, in fixing a single base point, instead of cleverly choosing a whole packet of points which is invariant under the symmetries of the situation, which thus get lost on the way. In certain situations (such as descent theorems for fundamental groups à la Van Kampen) it is much more elegant, even indispensable for understanding something, to work with fundamental groupoids with respect to a suitable packet of base points, [,,,] — Alexander Grothendieck, Esquisse d'un Programme (Section 2, English translation) (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 55264190 (xsd:integer)
dbo:wikiPageLength
  • 9065 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1090663023 (xsd:integer)
dbo:wikiPageWikiLink
dbp:author
dbp:id
  • fundamental+groupoid (en)
  • fundamental+infinity-groupoid (en)
dbp:quote
  • [...] people still obstinately persist, when calculating with fundamental groups, in fixing a single base point, instead of cleverly choosing a whole packet of points which is invariant under the symmetries of the situation, which thus get lost on the way. In certain situations it is much more elegant, even indispensable for understanding something, to work with fundamental groupoids with respect to a suitable packet of base points, [,,,] (en)
dbp:source
  • Esquisse d'un Programme (en)
dbp:title
  • fundamental groupoid (en)
  • fundamental infinity-groupoid (en)
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a topological space. In terms of category theory, the fundamental groupoid is a certain functor from the category of topological spaces to the category of groupoids. — Alexander Grothendieck, Esquisse d'un Programme (Section 2, English translation) (en)
  • In der Mathematik, speziell der algebraischen Topologie, soll das Fundamentalgruppoid eines topologischen Raumes die Menge der Wegzusammenhangskomponenten und die Fundamentalgruppen (zu allen ) in einem einzigen algebraischen Objekt zusammenfassen. Das Fundamentalgruppoid ist ein Gruppoid, also eine Kategorie, in der jeder Morphismus ein Isomorphismus ist. Die Objekte sind die Punkte von , die Morphismen von nach sind die Homotopieklassen (relativ ) von stetigen Wegen mit . (de)
rdfs:label
  • Fundamentalgruppoid (de)
  • Fundamental groupoid (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License