[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

About: EEG analysis

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

EEG analysis is exploiting mathematical signal analysis methods and computer technology to extract information from electroencephalography (EEG) signals. The targets of EEG analysis are to help researchers gain a better understanding of the brain; assist physicians in diagnosis and treatment choices; and to boost brain-computer interface (BCI) technology. There are many ways to roughly categorize EEG analysis methods. If a mathematical model is exploited to fit the sampled EEG signals, the method can be categorized as parametric, otherwise, it is a non-parametric method. Traditionally, most EEG analysis methods fall into four categories: time domain, frequency domain, time-frequency domain, and nonlinear methods. There are also later methods including deep neural networks (DNNs).

Property Value
dbo:abstract
  • EEG analysis is exploiting mathematical signal analysis methods and computer technology to extract information from electroencephalography (EEG) signals. The targets of EEG analysis are to help researchers gain a better understanding of the brain; assist physicians in diagnosis and treatment choices; and to boost brain-computer interface (BCI) technology. There are many ways to roughly categorize EEG analysis methods. If a mathematical model is exploited to fit the sampled EEG signals, the method can be categorized as parametric, otherwise, it is a non-parametric method. Traditionally, most EEG analysis methods fall into four categories: time domain, frequency domain, time-frequency domain, and nonlinear methods. There are also later methods including deep neural networks (DNNs). (en)
  • 腦波分析(EEG analysis)也稱為腦電圖分析,是用數學的信号处理以及電腦科技,從腦電圖(EEG)信號中提取相關資訊。腦波分析的目的是幫助研究者對人腦有進一步的瞭解,輔助医生的诊断以及疗法的選擇,並且提昇脑机接口(英語:Brain-computer Interface, 簡稱BCI)的技術。腦波分析的技術有許多分類的方式,若是要從腦電圖信號中找到大致符合腦電圖信號的数学模型,此方法可以分類為參數型,否則,就是非參數型的方式。傳統上,大部份的腦波分析方法可以分為四類:時域、頻域、時頻分析及非線性方法,也有一些較新的方法,包括使用深度学习(DNNs)的方法。 (zh)
dbo:wikiPageID
  • 59384115 (xsd:integer)
dbo:wikiPageLength
  • 16663 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1047000335 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • EEG analysis is exploiting mathematical signal analysis methods and computer technology to extract information from electroencephalography (EEG) signals. The targets of EEG analysis are to help researchers gain a better understanding of the brain; assist physicians in diagnosis and treatment choices; and to boost brain-computer interface (BCI) technology. There are many ways to roughly categorize EEG analysis methods. If a mathematical model is exploited to fit the sampled EEG signals, the method can be categorized as parametric, otherwise, it is a non-parametric method. Traditionally, most EEG analysis methods fall into four categories: time domain, frequency domain, time-frequency domain, and nonlinear methods. There are also later methods including deep neural networks (DNNs). (en)
  • 腦波分析(EEG analysis)也稱為腦電圖分析,是用數學的信号处理以及電腦科技,從腦電圖(EEG)信號中提取相關資訊。腦波分析的目的是幫助研究者對人腦有進一步的瞭解,輔助医生的诊断以及疗法的選擇,並且提昇脑机接口(英語:Brain-computer Interface, 簡稱BCI)的技術。腦波分析的技術有許多分類的方式,若是要從腦電圖信號中找到大致符合腦電圖信號的数学模型,此方法可以分類為參數型,否則,就是非參數型的方式。傳統上,大部份的腦波分析方法可以分為四類:時域、頻域、時頻分析及非線性方法,也有一些較新的方法,包括使用深度学习(DNNs)的方法。 (zh)
rdfs:label
  • EEG analysis (en)
  • 腦波分析 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License