dbo:abstract
|
- In geometry, it is an unsolved conjecture of Hugo Hadwiger that every simplex can be dissected into orthoschemes, using a number of orthoschemes bounded by a function of the dimension of the simplex. If true, then more generally every convex polytope could be dissected into orthoschemes. (en)
- Нерешённая гипотеза Гуго Хадвигера утверждает, что любой симплекс может быть разбит на , причём число ортосхем ограничено сверху функцией от размерности симплекса. Если гипотеза верна, то верно и более общее утверждение, что любой выпуклый многогранник можно разбить на ортосхемы. (ru)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 7664 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- In geometry, it is an unsolved conjecture of Hugo Hadwiger that every simplex can be dissected into orthoschemes, using a number of orthoschemes bounded by a function of the dimension of the simplex. If true, then more generally every convex polytope could be dissected into orthoschemes. (en)
- Нерешённая гипотеза Гуго Хадвигера утверждает, что любой симплекс может быть разбит на , причём число ортосхем ограничено сверху функцией от размерности симплекса. Если гипотеза верна, то верно и более общее утверждение, что любой выпуклый многогранник можно разбить на ортосхемы. (ru)
|
rdfs:label
|
- Dissection into orthoschemes (en)
- Разбиение на ортосхемы (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |