[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In geometry, the demiregular tilings are a set of Euclidean tessellations made from 2 or more regular polygon faces. Different authors have listed different sets of tilings. A more systematic approach looking at symmetry orbits are the 2-uniform tilings of which there are 20. Some of the demiregular ones are actually 3-uniform tilings.

Property Value
dbo:abstract
  • In geometry, the demiregular tilings are a set of Euclidean tessellations made from 2 or more regular polygon faces. Different authors have listed different sets of tilings. A more systematic approach looking at symmetry orbits are the 2-uniform tilings of which there are 20. Some of the demiregular ones are actually 3-uniform tilings. (en)
  • Полурегулярная мозаика — евклидова мозаика, замощающих плоскость двумя или более правильными многоугольниками. Разные авторы перечисляют различные наборы мозаик. Наиболее систематический подход, рассматривающий орбиты симметрии, относится к 2-однородным мозаикам, которых 20. Некоторые из полурегулярных мозаик, фактически, являются 3-однородными мозаиками. (ru)
  • 在幾何學中,不完全正鑲嵌圖(Demiregular Tessellation)亦稱多形鑲嵌(polymorph tessellation)是一種平面的密鋪,且由2種或以上的正多邊形經過重複的排列和組合,且沒有空隙或重疊而組成,是的一種。不完全正鑲嵌圖與半正鑲嵌圖(均勻半正鑲嵌圖)是不一樣的,半正鑲嵌圖(均勻半正鑲嵌圖)是每個頂點皆相同,但不完全正鑲嵌圖混合了多種頂點。 不完全正鑲嵌圖在定義上是有些爭議的,有些學者將其定義為:除了3種正鑲嵌圖、8種半正鑲嵌圖之外的所有由正多邊形組成的平面密鋪為不完全正鑲嵌圖,但是將會導致不完全正鑲嵌圖不是有限的,會是無限多種。 曾有學者認為不完全正鑲嵌圖共有14個,然而,並非所有文獻來源都是14個。現在認同的較精確的定義是由Krötenheerdt提出,共有20個被列為不完全正鑲嵌圖。,分別為:扭稜截半六邊形鑲嵌、兩種六角化六邊形鑲嵌、六種三角形-正方形鑲嵌、兩種側帳塔截角六邊形鑲嵌、、六角化大斜方截半六邊形鑲嵌、異扭稜六邊形鑲嵌、、同相截半六邊形柱鑲嵌、、、截半截角正方形鑲嵌、 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 46891994 (xsd:integer)
dbo:wikiPageLength
  • 10362 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1046460107 (xsd:integer)
dbo:wikiPageWikiLink
dbp:title
  • Demiregular tessellation (en)
dbp:urlname
  • DemiregularTessellation (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In geometry, the demiregular tilings are a set of Euclidean tessellations made from 2 or more regular polygon faces. Different authors have listed different sets of tilings. A more systematic approach looking at symmetry orbits are the 2-uniform tilings of which there are 20. Some of the demiregular ones are actually 3-uniform tilings. (en)
  • Полурегулярная мозаика — евклидова мозаика, замощающих плоскость двумя или более правильными многоугольниками. Разные авторы перечисляют различные наборы мозаик. Наиболее систематический подход, рассматривающий орбиты симметрии, относится к 2-однородным мозаикам, которых 20. Некоторые из полурегулярных мозаик, фактически, являются 3-однородными мозаиками. (ru)
  • 在幾何學中,不完全正鑲嵌圖(Demiregular Tessellation)亦稱多形鑲嵌(polymorph tessellation)是一種平面的密鋪,且由2種或以上的正多邊形經過重複的排列和組合,且沒有空隙或重疊而組成,是的一種。不完全正鑲嵌圖與半正鑲嵌圖(均勻半正鑲嵌圖)是不一樣的,半正鑲嵌圖(均勻半正鑲嵌圖)是每個頂點皆相同,但不完全正鑲嵌圖混合了多種頂點。 不完全正鑲嵌圖在定義上是有些爭議的,有些學者將其定義為:除了3種正鑲嵌圖、8種半正鑲嵌圖之外的所有由正多邊形組成的平面密鋪為不完全正鑲嵌圖,但是將會導致不完全正鑲嵌圖不是有限的,會是無限多種。 曾有學者認為不完全正鑲嵌圖共有14個,然而,並非所有文獻來源都是14個。現在認同的較精確的定義是由Krötenheerdt提出,共有20個被列為不完全正鑲嵌圖。,分別為:扭稜截半六邊形鑲嵌、兩種六角化六邊形鑲嵌、六種三角形-正方形鑲嵌、兩種側帳塔截角六邊形鑲嵌、、六角化大斜方截半六邊形鑲嵌、異扭稜六邊形鑲嵌、、同相截半六邊形柱鑲嵌、、、截半截角正方形鑲嵌、 (zh)
rdfs:label
  • Demiregular tiling (en)
  • Полурегулярная мозаика (ru)
  • 不完全正鑲嵌圖 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License