[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

About: Cracovian

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In astronomical and geodetic calculations, Cracovians are a clerical convenience introduced in the 1930s by Tadeusz Banachiewicz for solving systems of linear equations by hand. Such systems can be written as Ax = b in matrix notation where x and b are column vectors and the evaluation of b requires the multiplication of the rows of A by the vector x. Since (AB)T = BTAT, the products (A ∧ B) ∧ C and A ∧ (B ∧ C) will generally be different; thus, Cracovian multiplication is non-associative. Cracovians are an example of a quasigroup.

Property Value
dbo:abstract
  • In astronomical and geodetic calculations, Cracovians are a clerical convenience introduced in the 1930s by Tadeusz Banachiewicz for solving systems of linear equations by hand. Such systems can be written as Ax = b in matrix notation where x and b are column vectors and the evaluation of b requires the multiplication of the rows of A by the vector x. Cracovians introduced the idea of using the transpose of A, AT, and multiplying the columns of AT by the column x. This amounts to the definition of a new type of matrix multiplication denoted here by '∧'. Thus x ∧ AT = b = Ax. The Cracovian product of two matrices, say A and B, is defined by A ∧ B = BTA, where BT and A are assumed compatible for the common (Cayley) type of matrix multiplication. Since (AB)T = BTAT, the products (A ∧ B) ∧ C and A ∧ (B ∧ C) will generally be different; thus, Cracovian multiplication is non-associative. Cracovians are an example of a quasigroup. Cracovians adopted a column-row convention for designating individual elements as opposed to the standard row-column convention of matrix analysis. This made manual multiplication easier, as one needed to follow two parallel columns (instead of a vertical column and a horizontal row in the matrix notation.) It also sped up computer calculations, because both factors' elements were used in a similar order, which was more compatible with the sequential access memory in computers of those times — mostly magnetic tape memory and drum memory. Use of Cracovians in astronomy faded as computers with bigger random access memory came into general use. Any modern reference to them is in connection with their non-associative multiplication. (en)
  • En los cálculos astronómicos y geodésicos, los Cracovianos son un sistema de cálculo matricial introducido en 1930 por Tadeusz Banachiewicz para la resolución manual de sistemas de ecuaciones lineales. Tales sistemas se pueden escribir en notación matricial como Ax = b, donde x y b son vectores columna y la obtención de b requiere la multiplicación de las filas de A por el vector x. (es)
  • Krakowian – tablica zastępująca macierz w obliczeniach ręcznych zaproponowana przez Tadeusza Banachiewicza. Ma inaczej zdefiniowane mnożenie, w krakowianach mnoży się przez siebie kolumny, dzięki temu do wykrywania błędów obliczeń można stosować sumy kontrolne.Zastosowanie krakowianów upraszcza wiele wzorów i obliczeń numerycznych. Wygodny przy obliczeniach ręcznych i korzystaniu z pamięci sekwencyjnej komputerów. Właściwość tę wykorzystywał wczesny komputer PARK z 1957 r. (pl)
dbo:wikiPageID
  • 7124500 (xsd:integer)
dbo:wikiPageLength
  • 2950 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1092747914 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdfs:comment
  • En los cálculos astronómicos y geodésicos, los Cracovianos son un sistema de cálculo matricial introducido en 1930 por Tadeusz Banachiewicz para la resolución manual de sistemas de ecuaciones lineales. Tales sistemas se pueden escribir en notación matricial como Ax = b, donde x y b son vectores columna y la obtención de b requiere la multiplicación de las filas de A por el vector x. (es)
  • Krakowian – tablica zastępująca macierz w obliczeniach ręcznych zaproponowana przez Tadeusza Banachiewicza. Ma inaczej zdefiniowane mnożenie, w krakowianach mnoży się przez siebie kolumny, dzięki temu do wykrywania błędów obliczeń można stosować sumy kontrolne.Zastosowanie krakowianów upraszcza wiele wzorów i obliczeń numerycznych. Wygodny przy obliczeniach ręcznych i korzystaniu z pamięci sekwencyjnej komputerów. Właściwość tę wykorzystywał wczesny komputer PARK z 1957 r. (pl)
  • In astronomical and geodetic calculations, Cracovians are a clerical convenience introduced in the 1930s by Tadeusz Banachiewicz for solving systems of linear equations by hand. Such systems can be written as Ax = b in matrix notation where x and b are column vectors and the evaluation of b requires the multiplication of the rows of A by the vector x. Since (AB)T = BTAT, the products (A ∧ B) ∧ C and A ∧ (B ∧ C) will generally be different; thus, Cracovian multiplication is non-associative. Cracovians are an example of a quasigroup. (en)
rdfs:label
  • Cracoviano (es)
  • Cracovian (en)
  • Krakowian (pl)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License